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a b s t r a c t

A systematic numerical study of three-dimensional natural convection of air in a differentially heated
cubical cavity with Rayleigh number (Ra) up to 1010 is performed by using the recently developed cou-
pled discrete unified gas-kinetic scheme. It is found that temperature and velocity boundary layers are
developed adjacent to the isothermal walls, and become thinner as Ra increases, while no apparent
boundary layer appears near adiabatic walls. Also, the lateral adiabatic walls apparently suppress the
convection in the cavity, however, the effect on overall heat transfer decreases with increasing Ra.
Moreover, the detailed data of some specific important characteristic quantities is first presented for
the cases of high Ra (up to 1010). An exponential scaling law between the Nusselt number and Ra is also
found for Ra from 103 to 1010 for the first time, which is also consistent with the available numerical and
experimental data at several specific values of Ra.
� 2017 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Natural convection flow (NCF) in a differentially heated cubical
cavity is one of the fundamental flow configurations in heat trans-
fer and fluid mechanics studies, and it has many significant appli-
cations, including air flow in buildings, cooling of electronic
devices, and energy storage systems. In recent years, with the rapid
advance of the computer technology, direct numerical simulation
(DNS) has become a popular and competitive way to study thermal
convection flow problems.

The early numerical studies of NCF were usually restricted to
two–dimensional (2D) configuration with relatively low Rayleigh
numbers ðRaÞ. The pioneering work of de Vahl Davis et al. [1] pro-
vided original benchmark solutions for a square 2D cavity with
103 6 Ra 6 106; afterward, more accurate results were presented
by Hortmann et al. [2] using the multi-grid method with a much
finer mesh. Many others have repeated results with Ra up to 108

[2–6].
As actual flow is always three–dimensional (3D), many efforts

have also been made on 3D simulations. For example, Mallinson
et al. [7] investigated the effects of a certain aspect of a ratio on
flow patterns with Ra up to 106; Fusegi et al. [8] simulated the
NCF in an air-filled cubical cavity for Ra of 104 and 106, and clari-

fied 3D structures of flow and temperature; Labrosse et al. [9]
observed the hysteretic behavior by using a pseudo-spectral sol-
ver; the 3D cavity of aspect ratio 4 with periodic lateral walls
was studied by Trias et al. [10,11], and significant differences were
observed in flow dynamics between 2D and 3D results. They also
emphasized that the NCF in a 3D cubical cavity with adiabatic lat-
eral walls had received comparatively less attentions
[8,12,9,13,14].

The above mentioned numerical simulations of NCF are per-
formed by the traditional computational fluid dynamics (CFD)
methods on the basis of the Navier–Stokes equations (NSEs), which
are a set of second–order nonlinear partial differential equations
(PDEs). Recently, kinetic methods based on the Boltzmann model
equation have become an alternative method to the NSEs with
some distinctive features. Different from the NSEs with a nonlinear
and nonlocal convection term, the Boltzmann equation is a first-
order linear PDE, and the nonlinearity resides locally in its collision
term. These features make kinetic methods easy to realize and par-
allelize with high computational efficiency. Many kinetic methods
have been recently utilized to simulate NCF problem, such as the
lattice Boltzmann methods (LBM) [15–23] and the gas-kinetic
scheme [24].

However, up to date, the study of high Ra (up to 1010) NCF in a
differentially heated cubical cavity is limited to 2D configuration,
while most of the available investigations on 3D NCF are for low
�Ra (up to 107) flows. For the NCF with high Ra, it requires much
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finer mesh adjacent to wall boundary to capture boundary layer
than that in the center of cavity. Therefore, an accurate, stable
and mesh flexible method is preferable for numerical study of
the 3D NCF.

Recently, starting from the Boltzmann model equation, a dis-
crete unified gas–kinetic scheme (DUGKS) was proposed for both
hydrodynamic and rarefied flows [25–27]. As a finite–volume
(FV) method, DUGKS can be easily implemented on non-uniform
or unstructured meshes to satisfy the local accuracy requirement
[28–30]. Particularly, although sharing the common kinetic origin,
some distinctive features also exist between DUGKS and LBM. In
fact, several comparative studies of the standard LBM and DUGKS
have been preformed systematically for laminar flows [28,31], tur-
bulent flows [32,33], and natural convection flows [29] in previous
work. Generally, for flows without solid boundaries, for example
the decaying turbulent flow, the accuracy of standard LBM is
slightly higher than the DUGKS [32], while for flows involving solid
boundaries, the DUGKS is even more accurate than the standard
LBM [28,33]. Furthermore, owing to the semi-implicitness in the
construction of gas distribution function at the cell interfaces, the
DUGKS is much more stable and robust than LBM [28,29,32]. How-
ever, with a same regular grid, the standard LBM is faster than the
DUGKS per iteration [28,29]. But benefiting from the FV nature,
non-uniform meshes can be easily employed without loss of accu-
racy and additional efforts in DUGKS, and its efficiency can be sig-
nificantly improved by employing a non-uniform mesh according
to the local accuracy requirement [28,29,32]. This is the main rea-
son why we use the DUGKS, instead of the LBM, to study the high
Rayleigh number natural convection flow, which requires much
fine mesh near walls to resolve the thin boundary layers. Although
the standard LBM has low numerical dissipation [34], it can only be
implemented on regular meshes due to its special streaming pro-
cess, and the existing reported studies of 3D NCF are limited to
low Ra [17,23]. Some FV based LBM have been also developed in
the past decades, but it has been demonstrated that the DUGKS
is obviously superior to the current best FV-LBM [35] in terms of
accuracy and numerical stability [31]. In addition, the kinetic nat-
ure makes DUGKS suitable for parallelized computing. High com-
putational efficiency is essential for large scale 3D simulations. In
order to simulate the incompressible thermal flow, a coupled
DUGKS (CDUGKS) has been proposed using the double distribution
strategy, and its accuracy, efficiency and numerical stability have
been validated by simulating the 2D NCF with Ra up to 1010 [29].
In this work, we will contribute to study the NCF in a differentially
heated cubical cavity with Ra up to 1010 using the CDUGKS. The
method is firstly validated by comparing with available numerical
and experimental data. Flow characteristics and heat transfer are
then to be investigated. Finally, a scaling correlation between Ray-
leigh and Nusselt numbers with Ra up to 1010 will be obtained for
the first time.

2. Numerical method

2.1. Kinetic model equations

The coupled discrete unified gas-kinetic scheme is derived from
the following Boltzmann model equations [24]

@f
@t

þ n � rxf ¼ X � f eq � f
sv

þ F; ð1Þ

@g
@t

þ n � rxg ¼ W � geq � g
sc

; ð2Þ

where f and g are gas distribution functions for velocity and temper-
ature fields, respectively, and both are functions of space x, time t,

and molecular velocity n; f eq and geq are the corresponding equilib-
rium states

f eq ¼ q
ð2pRT1ÞD=2

exp �ðn� uÞ2
2RT1

 !
; ð3Þ

geq ¼ T

ð2pRT2ÞD=2
exp �ðn� uÞ2

2RT2

 !
; ð4Þ

here R is the gas constant, T1 and T2 are the constant variances. For
convenience, we set T1 ¼ T2 in this study. sv ¼ m=RT1 and
sc ¼ j=RT2 are the corresponding relaxation times, here m and j
are, respectively, the kinematic viscosity and heat conduction coef-
ficient, which determine the Prandtl number Pr ¼ m=j. For low
speed flows, the external force term F can be approximated as [36]

F ¼ �a � rnf � �a � rnf
eq ¼ a � n� uð Þ

RT1
f eq; ð5Þ

here a is the acceleration due to buoyancy force, and is approxi-
mated by the Boussinesq assumption

a ¼ g0b T � T0ð Þĝ; ð6Þ
where g0 is the gravitational constant, ĝ is the unit vector in the
gravitational direction.

In computation, the continuous molecular velocity space should
be approximated by a discrete velocity set fniji 2 Zg, so that the
integration on molecular velocity space can be numerically com-
puted. For nearly incompressible flow (i.e., when the Mach number
Ma � 1), the equilibrium states can be approximated using the
Taylor expansion to the second order, i.e.,

f eqi ¼ Wiq 1þ ni � u
RT1

þ ðni � uÞ2
2ðRT1Þ2

� juj2
2RT1

" #
; ð7Þ

geq
i ¼ WiT 1þ ni � u

RT2
þ ðni � uÞ2
2ðRT2Þ2

� juj2
2RT2

" #
; ð8Þ

where f eqi ¼ xif
eqðniÞ; geq

i ¼ xigeqðniÞ;xi ¼ Wið2pRT1ÞD=2 exp jni j2
2RT1;2

� �
,

andWi is the weight coefficient corresponding to molecular velocity
ni.

In the present study, we use nineteen velocities in three dimen-
sions, i.e., the D3Q19 model, with

ni ¼
ð0;0Þ i ¼ 0
�1;0;0ð Þc; 0;�1;0ð Þc; 0;0;�1ð Þc i ¼ 1� 6;
�1;�1;0ð Þc; �1;0;�1ð Þc; �1;�1;ð Þc i ¼ 7� 18;

8><
>: ð9Þ

where c ¼ ffiffiffiffiffiffiffiffiffiffiffi
3RT1

p
, and the corresponding weight coefficients are

W0 ¼ 1=3;W1;...;6 ¼ 1=18 and W7;...;18 ¼ 1=36. The discrete distribu-
tion functions f iðx; tÞ ¼ xif ðx; ni; tÞ and giðx; tÞ ¼ xigðx; ni; tÞ satisfy
the following equations

@f i
@t

þ ni � rxf i ¼ Xi � f eqi � f i
sv

þ Fi; ð10Þ

@gi

@t
þ ni � rxgi ¼ Wi � geq

i � gi

sc
: ð11Þ

The fluid density, velocity, and temperature can be obtained
from the discrete distribution functions,

q ¼
X
i

f i; qu ¼
X
i

nif i; T ¼
X
i

gi: ð12Þ

2.2. DUGKS for velocity field

The DUGKS is a FV method in which the computational domain
is divided into a set of control volumes. We integrate Eq. (10) over
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