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a b s t r a c t

Random roughness is omnipresent in engineering applications and may often affect performance in
unexpected way. Here, we employ synergistically stochastic simulations and second-order stochastic
perturbation analysis to study supersonic flow past a wedge with random rough surface. The roughness
(of length d) starting at the wedge apex is modeled as stochastic process (with zero mean and correlation
length A) obtained from a new stochastic differential equation. A multi-element probabilistic collocation
method (ME-PCM) on sparse grids is employed to solve the stochastic Euler equations while a WENO
scheme is used to discretize the equations in two spatial dimensions. The perturbation analysis is used
to verify the stochastic simulations and to provide insight for small values of A, where stochastic simu-
lations become prohibitively expensive. We show that the random roughness enhances the lift and drag
forces on the wedge beyond the rough region, and this enhancement is proportional to ðd=AÞ2. The effects
become more pronounced as the Mach number increases. These results can be used in designing smart
rough skins for airfoils for maximum lift enhancement at a minimum drag penalty.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Virtually any surface can be considered as rough under some
fine-scale spatial resolution. Roughness poses naturally a multi-
scale modeling problem as the characteristic large scale is often
orders of magnitude greater than the roughness height � or corre-
lation length A. Attempting to model roughness in fluid mechanics
applications often leads to either over-simplified formulations or
prohibitively expensive simulations, so no systematic numerical
studies have been published to date. In particular, for supersonic
flow past aerodynamic objects with random rough surface even
experimental studies are very limited. An intriguing experimental
finding published in the Russian literature [1] suggests that rough-
ness enhances lift in airfoils; this was later confirmed by other
experimental studies in USA [2] but the highest speeds tested were
below the supersonic regime.

Supersonic flow past a smooth wedge is a classical aerodynam-
ics problem, which has been studied extensively [3–7]. The shock
path and pressure distribution can be obtained by simple analyti-
cal formulas [8]. However, complex shock dynamics is observed
when considering a random rough wedge surface. Lighthill [9]
and Chu [10] used first-order perturbation analysis to study weak
interactions, whereby the shock wave is only slightly perturbed

from its base configuration. The first-order theory is adequate only
for very small roughness height and does not provide a measure of
the mean extra forces induced by roughness since for zero mean
height the first-order theory predicts zero mean forces. Here, we
employ second-order stochastic perturbation theory coupled with
stochastic numerical simulations to study the effect of large and
fine random roughness on shock dynamics. The use of the pertur-
bation analysis results is twofold: First, to properly verify the sim-
ulation results for small roughness height. Second, to cover the
parameter space in the limit of very small values of the correlation
length A for which the numerical simulations become prohibitively
expensive.

Specifically, to deal with the random roughness, a stochastic
mapping technique [11] is employed to transform the original gov-
erning equations defined on a random domain into stochastic dif-
ferential equations defined on a deterministic domain. This allows
us to employ well-developed theoretical techniques and recent
numerical methods for solving stochastic differential equations in
deterministic domains. In particular, a high-order probabilistic col-
location method (PCM, [12]) is used to solve the stochastic Euler
equations. PCM combines the strengths of Monte Carlo methods
and stochastic Galerkin methods. By taking advantage of the exist-
ing theory on multivariate polynomial interpolations (see [13,14]),
fast convergence is achieved using PCM, when the solutions pos-
sess sufficient smoothness in the random space. Additionally,
implementation of PCM is straightforward, as it only requires
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solutions of the corresponding deterministic problems at pre-se-
lected sampling points. The choice of these sampling or collocation
points is based on the sparse grid obtained from the Smolyak algo-
rithm [15]. Sparse grids offer high-order accuracy with conver-
gence rate not as strongly dependent on dimensionality. In the
current paper, we extend the stochastic collocation method to a
multi-element version (ME-PCM), which is computationally more
attractive.

The paper is organized as follows: In the next section, we pres-
ent the stochastic differential equation that models surface rough-
ness. In Section 3, we give the analytical solutions of the perturbed
forces for a full semi-infinite wedge derived from second-order
stochastic perturbation analysis. In Section 4, we introduce the
high-order stochastic collocation methods on sparse grids for
the two-dimensional stochastic Euler equations and also discuss
the stochastic mapping for random roughness. In Section 5, we
present the analytical results from the second-order stochastic per-
turbation analysis and numerical simulation results. We conclude
in Section 6 with a few remarks. We also include five Appendices
(A–E) that provide more details on the analytical results.

2. Modeling random roughness

We denote the roughness length as d, and we normalize all
length except the correlation length A by the roughness length d.
We describe the non-dimensional random roughness of correlation
length A as a non-dimensional stochastic process hmðx; xÞ through
the Karhunen–Loeve (KL) decomposition [16]:

hmðx; xÞ ¼ hmðxÞ þ
X1
i¼0

ffiffiffiffi
ki

p
wiðxÞniðxÞ; ð1Þ

where hmðxÞ denotes the mean, niðxÞf g is a set of uncorrelated ran-
dom variables with zero mean and unit variance, x is a random
event, and x is the spatial coordinate. Also, wiðxÞ and ki are the eigen-
functions and eigenvalues of the covariance kernel Rhhðx1; x2Þ,
respectively, obtained fromZ

D
Rhhðx1; x2Þwiðx2Þdx2 ¼ kiwiðx1Þ: ð2Þ

We assume that hmðxÞ ¼ 0, and the non-dimensional roughness
height (distance from the smooth surface) is written as

yðx; xÞ ¼ �hðx; xÞ ¼ �hm

l
; ð3Þ

where l ¼maxxðrðhmÞÞ, � represents the amplitude of the non-
dimensional roughness height, and h ¼ hm

l is a second-order stochas-
tic process with zero mean and unit variance. Here r represents the
standard deviation.

We can obtain the spatial covariance kernel Rhhðhmðx1; xÞ;
hmðx2; xÞÞ (following the procedure in [17]) based on the solution
of a fourth-order differential equation with stochastic right-
hand-side, of the form:

d4hm

dx4 þ k4hm ¼ f ðxÞ; ð4Þ

where x is normalized by the roughness length d, k ¼ d
A, and the ran-

dom forcing term f ðxÞ is white noise satisfying: E½f ðx1Þf ðx2Þ� ¼
dðx1 � x2Þ, where E½�� denotes the expectation. Here we consider
the case of a finite strip of roughness starting from the apex of the
wedge and having length d, see Fig. 1. The required boundary con-
ditions for this case are: hmð0; xÞ ¼ h0mð0; xÞ ¼ hmð1; xÞ ¼ h0mð1; xÞ ¼
0. The corresponding covariance is given in Appendix A. The eigen-
functions and eigenvalues can be obtained as solutions of the
homogenous equation d4w

dx4 � k4w ¼ 0 with the boundary conditions
wð0Þ ¼ wð1Þ ¼ w0ð0Þ ¼ w0ð1Þ ¼ 0. Such boundary conditions are cho-
sen due to the assumption for second-order perturbation analysis,

which assumes the random roughness and other perturbed quanti-
ties are small and smooth in the computational domain. The sto-
chastic process hmðx; xÞ can then be represented by the KL
expansion

hmðx; xÞ ¼
X1
n¼1

1

ðK4
n þ k4Þ

wnðxÞnnðxÞ; ð5Þ

where wnðxÞ ¼ cos Knx� cosh Knx� cos Kn�cosh Kn
sin Kn�sinh Kn

ðsin Knx� sinh KnxÞ,
Kn is obtained by solving cos Kn cosh Kn ¼ 1, and fnnðxÞg is a set
of uncorrelated random variables with zero mean and unit variance.
The stochastic perturbation analysis we develop can deal with ran-
dom variables with different probability density functions. In the
numerical results, we use primarily uniform random variables
nn 2 ½�

ffiffiffi
3
p

;
ffiffiffi
3
p
� and random variables with beta distributions: for

a ¼ 1 and b ¼ 1, nn 2 ½�
ffiffiffi
5
p

;
ffiffiffi
5
p
�; for a ¼ 2 and b ¼ 2, nn 2 ½�

ffiffiffi
7
p

;ffiffiffi
7
p
�; for a ¼ 5 and b ¼ 5, nn 2 ½�

ffiffiffiffiffiffi
13
p

;
ffiffiffiffiffiffi
13
p
�.

In order to investigate the effect of roughness granularity, we
study three different non-dimensional correlation lengths A=d ¼
1, A=d ¼ 0:1 and A=d ¼ 0:01. These values determine the number
of random dimensions that are required for accurate representa-
tion of the random roughness through the KL expansion. Here we
are using the following criterion:XN

n¼0

Kn

ðK4
n þ k4Þ

P 90%
X1
n¼0

Kn

ðK4
n þ k4Þ

based on which we choose the number of dimensions N. We arrived
at this criterion after considerable testing. If the number of random
dimensions is not sufficient, oscillations are observed for both the
mean and the variance. For the results we present in this paper
we have found that N ¼ 2 is required for A=d ¼ 1, N ¼ 12 for
A=d ¼ 0:1 and N ¼ 60 for A=d ¼ 0:01.

3. Stochastic perturbation analysis

We consider the perturbation from the mean location of an ob-
lique shock in supersonic flow past a rough half-wedge with a fi-
nite roughness strip of length d while the rest of the wedge is
smooth; a schematic of this problem and notation are shown in
Fig. 1. We assume that: (1) The random wedge roughness is small,
and correspondingly the perturbation of the shock slope is small.
(2) The oblique shock is attached to the wedge. (3) The flow be-
tween the shock and the wedge is adiabatic.

The domain of solution is between the perturbed shock and the
wedge surface, and we employ the Rankine–Hugoniot conditions
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Fig. 1. Sketch of supersonic flow past a wedge with rough surface: Definition of
coordinate system and notation; shown is also a perturbed shock path and the
location of the unperturbed shock corresponding to a smooth wedge surface.
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