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a b s t r a c t

A hybrid numerical-analytical solution is proposed to analyze MHD (magnetohydrodynamic) natural
convection of an electrically-conducting fluid within a square cavity, differentially heated at the sidewalls
and subjected to an inclined external magnetic field. The first goal is to expand the spectrum of applica-
tion of the so called Generalized Integral Transform Technique (GITT), dealing with a multiphysics formu-
lation, while further demonstrating the relative merits of the proposed eigenfunction expansion approach
in handling highly nonlinear and coupled systems of partial differential equations. The second goal is to
provide a set of benchmark results in this important application for quantities of practical interest in
determining the heat transfer rates, such as the average Nusselt number. The two-dimensional steady
state equations are written in dimensionless form using the streamfunction-only formulation and are
subsequently solved with the GITT approach, under automatic relative error control. Critical comparisons
are performed against previous work reported in the literature, both computational and experimental,
together with the corresponding physical interpretations, for different values of the governing parame-
ters, such as Grashof number, Hartmann number, Prandtl number, and magnetic field inclination angle.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Magnetohydrodynamics (MHD) deals with the motion of
electrically-conducting fluids under the influence of externally
applied electromagnetic fields. Examples of such fluids include ion-
ized gases (plasma), liquid metals, saline water, and electrolytes. A
quite comprehensive review on MHD may be found in the mono-
graph by Davidson [1]. MHD is currently viewed as a particular
case of a more general continuum mechanics-based theoretical
framework referred to as Unified Electro-Magneto-Fluid Dynamics
(EMFD) [2–5]. MHD natural convection inside closed cavities has
received considerable attention in the past few decades because
it occurs in numerous engineering applications such as in the
liquid metal cooling of nuclear reactors and electric equipment
[6–10], the manufacturing process of high-quality crystals [9,11–12],
and magnetic-levitation casting [13], to name just a few.

The literature on MHD natural convection inside closed cavities
is quite extensive and a detailed review is beyond the scope of the

current work. The vast majority of previous studies focuses on two-
dimensional laminar and incompressible flow of electrically-
conducting fluids inside cavities, differentially heated either from
the sidewalls or from its top and bottom walls, and subjected to
either transverse, parallel or inclined magnetic fields with respect
to the gravitational acceleration vector. Oreper and Szekely [12]
were the first to numerically investigate the effect of an externally
imposed magnetic field (transversal to gravity) on the natural con-
vection inside a square cavity differentially heated from the side-
walls. Ozoe and Okada [11] investigated the MHD natural
convection in three-dimensional cubic enclosures differentially
heated from two vertical walls and under magnetic fields oriented
along the principal axis of the cubic enclosure. Alchaar et al. [9]
investigated the MHD natural convection inside a shallow cavity
heated from below and cooled from the top, and subjected to an
inclined magnetic field. Al-Najem et al. [10] investigated the
MHD natural convection within a tilted square cavity differentially
heated from its vertical walls and permeated by an inclined exter-
nal magnetic field. Colaço et al. [14] revisited the MHD natural con-
vection problem investigated in [10] and solved the MHD
governing equations using a meshless method with radial basis
functions (RBF) [15]. Results for the velocity and temperature
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distributions as well as for the average Nusselt number at the solid
walls of the cavity have been reported in the literature, offering ref-
erence values for comparison and verification tasks. The effects of
the governing parameters, namely, the Grashof number, the Hart-
mann number, the inclination angle of either the cavity or the
magnetic field on the convective heat transfer rate, represented
by the average Nusselt number, are well documented. The reported
results mostly indicate that an external magnetic field, indepen-
dent of its orientation, contributes to reducing the convective heat
transfer through the cavity. The extent of heat transfer reduction
depends strongly upon the imposed magnetic field strength. Mag-
netic fields oriented perpendicular to the heat flow direction are
the most effective in suppressing convective heat transfer. For cav-
ities heated from the bottom and cooled from the top, the results
reported in [9] also indicate that the convection modes within
the cavity depend strongly upon both the strength and inclination
of the magnetic field.

From the literature review on MHD natural convection within
closed cavities, the following remarks should be summarized.
Firstly, the vast majority of the previous works relies on either
finite-difference or finite-volume schemes to solve the governing
equations. Such classical numerical schemes require spatial dis-
cretization of the domain and an approach to handle the
velocity-pressure coupling. A few authors avoided the velocity-
pressure coupling by rewriting the governing equations using the
streamfunction-vorticity formulation. However, the boundary con-
ditions adopted for the vorticity field at the solid walls are rarely
reported, with a noteworthy exception in [11]. Secondly, few
works have attempted to solve the governing equations using the
streamfunction-only formulation [14], which has the advantage
of not requiring boundary conditions for the vorticity field at the

solid walls, albeit it requires a special scheme to accurately approx-
imate fourth-order derivatives [14]. Thirdly, there are non-
negligible discrepancies amongst the numerical results reported
in the literature for the average Nusselt number, with relative devi-
ations ranging from 2.9% to 32% [14]. Fourth, the majority of previ-
ous works reports numerical results only for the special case in
which the magnetic field induced by fluid flow is negligible com-
pared to the imposed one (inductionless approximation), decou-
pling Maxwell’s equations from the Navier-Stokes equations for
fluid flow. The current work comprises a detailed derivation of
the conditions for this assumption to be valid.

Despite the extensive progress achieved by discrete numerical
methods, analytical-type approaches for diffusion and
convection-diffusion problems have been progressively advanced
and extended, in part motivated by offering benchmark results
for verification and calibration of the more flexible numerical
methods. Powerful hybrid analytical-numerical schemes have
emerged from the combination of classical analytical methods
with modern computational methods for ordinary differential
equations, benefiting as well from modern symbolic computation
platforms. The Generalized Integral Transform Technique (GITT)
is one such a hybrid method for solving linear or nonlinear diffu-
sion and convection-diffusion problems, which has been developed
for the last three decades, dealing with various classes of problems
in heat and fluid flow, as reviewed in different sources [16–24]. A
few contributions are here briefly mentioned, which have a closer
connection to the problem under consideration. Natural convec-
tion inside cavities was first dealt with the GITT in [25], for a
two-dimensional rectangular porous region with internal heat
generation. Transient analysis of natural convection in porous
cavities was then analyzed through the hybrid approach, both for

Nomenclature

Aij integral coefficient given by Eq. (42a)
B0
⁄, B⁄, B0⁄ induced magnetic fields

Bij integral coefficient given by Eq. (42b)
Cijk integral coefficient given by Eq. (42c)
Dijk integral coefficient given by Eq. (42d)
ex⁄, ey⁄ unit vectors along the x⁄ and y⁄ axes
E⁄ electric field strength
Eijk integral coefficient given by Eq. (42e)
�f i transformed boundary condition given by Eq. (42i)
Fij integral coefficient given by Eq. (42f)
g gravity acceleration
Gijk integral coefficient given by Eq. (42g)
Gr Grashof number
H0

⁄ magnetic field strength
Ha Hartmann number
Hijk integral coefficient given by Eq. (42h)
Iij integral coefficient given by Eq. (44c)
J⁄ electric current density
L cavity length
Nu, Nux¼0 local and average Nusselt numbers, respectively
NUi, NCi normalization integrals for eigenfunctions Ui(y) and

Ci(y), respectively
Nw, NT truncation orders for the streamfunction and tempera-

ture fields, respectively
p⁄(x⁄,y⁄) pressure field
Pr Prandtl number
Ra = GrPr Rayleigh number
Re Reynolds number
Rem magnetic Reynolds number
T⁄(x⁄,y⁄) temperature field
Tref
⁄ reference temperature

TC
⁄ temperature at the cold wall

TH
⁄ temperature at the hot wall

TiðxÞ transformed temperature
v⁄(x⁄,y⁄) velocity vector field
v0⁄ reference velocity
x⁄, y⁄ Cartesian coordinates

Greek letters
a fluid thermal diffusivity
ai eigenvalues for the streamfunction expansion
b coefficient of thermal expansion of fluid
bi eigenvalues for the temperature expansion
c magnetic field inclination angle with respect to x-axis
re fluid electric conductivity
le fluid magnetic permeability
m fluid kinematic viscosity
mm fluid magnetic diffusivity
q fluid density
Ui(y) eigenfunction for the streamfunction expansion
Ci(y) eigenfunction for the temperature expansion
�WiðxÞ transformed streamfunction
w⁄(x⁄,y⁄) streamfunction field

Subscripts and superscripts
i,j,k orders from eigenvalue problems
ref quantity evaluated at reference temperature Tref

*

� normalized eigenfunctions
⁄ dimensional quantities
__ transformed quantities
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