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a b s t r a c t

In this paper, we study multiscale finite element methods for stochastic porous media flow equations as
well as applications to uncertainty quantification. We assume that the permeability field (the diffusion
coefficient) is stochastic and can be described in a finite dimensional stochastic space. This is common
in applications where the coefficients are expanded using chaos approximations. The proposed multiscale
method constructs multiscale basis functions corresponding to sparse realizations, and these basis func-
tions are used to approximate the solution on the coarse-grid for any realization. Furthermore, we apply
our coarse-scale model to uncertainty quantification problem where the goal is to sample the porous
media properties given an integrated response such as production data. Our algorithm employs pre-com-
puted posterior response surface obtained via the proposed coarse-scale model. Using fast analytical
computations of the gradients of this posterior, we propose approximate Langevin samples. These sam-
ples are further screened through the coarse-scale simulation and, finally, used as a proposal in Metrop-
olis–Hasting Markov chain Monte Carlo method. Numerical results are presented which demonstrate the
efficiency of the proposed approach.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Many porous media processes are affected by heterogeneities at
various length scales as well as uncertainties. To predict the flow
and transport in stochastic porous media, some type of coarsening
is needed. The upscaling and multiscale methods for a realization
of heterogeneous porous media are extensively studied. In this pa-
per, we present an approach for sampling permeability condi-
tioned to an integrated response. Our proposed approach
combines multiscale finite element methods with sparse colloca-
tion techniques representing uncertainty space. The goal of multi-
scale methods is to coarsen the flow equations spatially. A sparse
collocation method is used to overcome the interpolation in high
dimensional uncertainty space.

As for multiscale techniques, we use multiscale finite element
type methods. A multiscale finite element method was first intro-
duced in [22]. The main idea of multiscale finite element methods
is to incorporate the small-scale information into finite element
basis functions and couple them through a global formulation of
the problem. The multiscale method in [22] shares some similari-
ties with a number of multiscale numerical methods, such as resid-
ual free bubbles [8], variational multiscale method [23,3], two-
scale conservative subgrid approaches [3], and multiscale mortar

methods [4]. We remark that special basis functions in finite ele-
ment methods have been used earlier in [6,5]. The multiscale finite
element methodology has been modified and successfully applied
to two-phase flow simulations in [24,1,14,17] and extended to
nonlinear partial differential equations [19,17].

In this paper, we consider permeability fields generated using a
two-point variogram. This type of permeability fields can be char-
acterized using the Karhunen–Loève expansion which results in a
parameterization of the uncertainty. Due to the high dimensional
nature of uncertainty space, one can not resolve all realizations.
We resort to sparse interpolation techniques (e.g., [31]) to repre-
sent the uncertainties and multiple scales. We note that ap-
proaches which combine sparse collocation techniques and
multiscale methods are not new. In a recent paper [20], the authors
propose an approach which uses variational multiscale method as
well as multiscale finite element methods to solve a stochastic par-
abolic equation. In particular, the stochastic parabolic equation is
solved using deterministic multiscale approaches at sparse colloca-
tion points in uncertainty space and then the solution is interpo-
lated. To our best knowledge, this is the first approach which
combines multiscale spatial methods and sparse collocation tech-
niques. Our proposed approaches follow the main idea of this ap-
proach.1 We discuss two type of approaches. In the first approach,
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the basis functions are interpolated using pre-computed basis func-
tions at collocation points. In the second approach, the stochastic
solution is projected to a finite dimensional space consisting of all
basis functions. Basis functions can be constructed both locally and
globally. The latter is efficient when there is no scale separation.
The difference between the proposed approach (the first approach)
and the approach presented in [20] is that the proposed approach
interpolates the basis functions which can be repeatedly used for dif-
ferent boundary conditions and source terms. The latter is important
for porous media applications.

We apply the proposed technique to an uncertainty quantifica-
tion problem where the permeability field is sampled based on oil
production rates (an integrated response). This sampling is per-
formed using Markov chain Monte Carlo (MCMC) methods with
Langevin instrumental probability distribution. We first compute
the posterior distribution at sparse locations that correspond to
some selected realizations of the permeability field. These compu-
tations are performed on the coarse (spatial) grid, and thus they are
inexpensive. Furthermore, the posterior distribution is approxi-
mated using polynomial interpolation. Based on interpolated pos-
terior distribution, Langevin samples are proposed using analytical
gradients of the posterior distribution. These samples are further
screened with coarse-scale models. If the screening is passed, we
perform fine-scale simulations to make a final acceptance decision.

The difference between the proposed approach and the previ-
ous findings (e.g., [12]) is that we use an approximate posterior
distribution based on both interpolation in uncertainty space and
coarsening in physical space. In [12], for each proposal, the corre-
sponding fine-scale equations are coarsened and new permeability
is proposed based on the coarse-scale models. This implies that one
still needs to perform multiple coarse-scale simulations for each
proposal in order to compute the gradient of the posterior distribu-
tion. Though the upscaling is in general inexpensive, performing
many upscaled models will slow down the simulations. The main
idea of the proposed method is to perform a few coarse-scale sim-
ulations apriori using multiscale methods and then use these re-
sults to interpolate the posterior distribution. Thus, each proposal
is computed analytically once the posterior distribution is approx-
imated. This procedure is faster than our previously proposed
methods which is also shown numerically.

In the paper, we present numerical results to show the effi-
ciency of the proposed approaches. We consider permeability
fields prescribed by covariance matrix. Next, we use Karhunen–
Loève expansion to parameterize the permeability field. Both nor-
mal and exponential variograms are considered. In the case of the
latter, the uncertainty space is large (in order of 100 dimensions).
This makes the uncertainty quantification CPU demanding since
one needs to run many simulations. Numerical results show that
the proposed algorithm is efficient and it has mixing properties
similar to fine-scale Langevin algorithm. Moreover, we show that
the proposed methods provide an order of magnitude CPU saving
compared to the approaches where no interpolation is used.

This paper is organized as follows: In the next section, we
briefly describe the model equations and known multiscale tech-
niques for solving flow equations. In Section 3, we describe multi-
scale methods for the stochastic flow equations. In Section 4, the
applications to uncertainty quantification is presented. The last
two sections are dedicated to numerical implementation and
numerical results.

2. Preliminaries

In this section, we present a model problem and background
material for the multiscale finite element method. We consider
two-phase flows in a reservoir (denoted by X) under the assump-

tion that the displacement is dominated by viscous effects; i.e.,
we neglect the effects of gravity, compressibility, and capillary
pressure. Porosity will be considered to be constant. The two
phases will be referred to as water and oil, designated by sub-
scripts w and o, respectively. We write Darcy’s law for each phase
as follows:

vj ¼ �
krjðSÞ

lj
k � rp; ð2:1Þ

where vj is the phase velocity, k is the permeability tensor, krj is the
relative permeability to phase j ðj ¼ o;wÞ, S is the water saturation
(volume fraction) and p is pressure. Throughout the paper, we will
assume that the permeability tensor is diagonal k ¼ kI, where k is a
scalar and I is the unit tensor. In this work, a single set of relative
permeability curves is used. Combining Darcy’s law with a state-
ment of conservation of mass allows us to express the governing
equations in terms of the so-called pressure and saturation
equations:

r � ðkðSÞkrpÞ ¼ h; ð2:2Þ
oS
ot
þ v � rf ðSÞ ¼ 0; ð2:3Þ

where k is the total mobility, h is the source term, f ðSÞ is the flux
function, and v is the total velocity, which are respectively given by

kðSÞ ¼ krwðSÞ
lw

þ kroðSÞ
lo

; ð2:4Þ

f ðSÞ ¼ krwðSÞ=lw

krwðSÞ=lw þ kroðSÞ=lo
; ð2:5Þ

v ¼ vw þ vo ¼ �kðSÞk � rp: ð2:6Þ

The above descriptions are referred to as the fine model of the two-
phase flow problem. For the single-phase flow, krwðSÞ ¼ S and
kroðSÞ ¼ 1� S.

For later discussion, we need to define the fractional flow re-
sponse. Fractional flow (also referred as oil cut) is an integrated re-
sponse over the whole domain. The oil cut (or fractional flow) is
defined as the fraction of oil in the produced fluid and is given
by qo=qt , where qt ¼ qo þ qw, with qo and qw being the flow rates
of oil and water at the production edge of the model. In particular,
qw ¼

R
oXout f ðSÞv � ndx, qt ¼

R
oXout v � ndx, and qo ¼ qt � qw, where

oXout is the outer flow boundary. Pore volume injected, defined
as PVI ¼ 1

Vp

R t
0 qtðsÞds, with Vp being the total pore volume of the

system, provides the dimensionless time for the displacement.
Next, we briefly describe the use of multiscale finite element

methods for two-phase flow equations. We will use the multiscale
finite element framework, though a finite volume element method
is chosen as a global solver. Finite volume method is chosen be-
cause, by its construction, it satisfies the numerical local conserva-
tion which is important in groundwater and reservoir simulations.
Let Kh denote the collection of coarse elements/rectangles K. Con-
sider a coarse element K, and let nK be its center. The element K is
divided into four rectangles of equal area by connecting nK to the
midpoints of the element’s edges. We denote these quadrilaterals
by Kn, where n 2 ZhðKÞ, are the vertices of K. Also, we denote
Zh ¼

S
K ZhðKÞ and Z0

h � Zh the vertices which do not lie on the
Dirichlet boundary of X. The control volume Vn is defined as the
union of the quadrilaterals Kn sharing the vertex n.

The key idea of the method is the construction of basis functions
on the coarse-grids, such that these basis functions capture the
small-scale information on each of these coarse-grids. The method
that we use follows its finite element counterpart presented in
[22]. The basis functions are constructed from the solution of the
leading order homogeneous elliptic equation on each coarse ele-
ment with some specified boundary conditions. We consider a
coarse element K that has d vertices, the local basis functions
/i; i ¼ 1; . . . ; d are set to satisfy the following elliptic problem:
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