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a b s t r a c t

A macroscopic model for solidification of pure metal in porous media is derived using the volume
averaging method. Solidification starts when the infiltration of the porous mould is completed and
therefore the phase change problem involving three phases (liquid and solid metal, mould) is governed
by diffusion. The upscaled model is first characterized by the local thermal equilibrium assumption (LTE)
between the liquid and the solid metallic phases leading to one energy conservation equation for the
equivalent metallic phase. On the other hand, local thermal non-equilibrium (LTNE) between the equiv-
alent continuous metallic phase and the mould is considered, giving rise to two coupled energy conser-
vation equations. The associated closure problems are derived and numerically solved allowing for the
determination of the effective transport properties. Numerical solutions of the macroscopic model are
qualitatively compared with available experiments.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Due to its practical interest solidification modeling of pure or
multicomponent mixtures has been the subject of an intense
research activity during the last decades [1]. For dendritic solidifi-
cation, macroscopic models based on upscaling procedures such as
the volume averaging method [2], have been developed in order to
provide a continuous description of the physics taking into account
phenomena at the smaller scales [3–6]. This procedure has been
found to be particularly efficient for the derivation of averaged
conservation equations and the determination of the associated
transport properties (permeability, effective conductivity, disper-
sion coefficient) [7,8]. Note that similar upscaling approaches have
been also considered for liquid-vapor phase change problems (dry-
ing processes, etc.) and comparison with solid-liquid phase change
modeling has been recently published [9,10]. The industrial con-
text of the present analysis concerns the elaboration of aluminum
metal foams which are characterized by very large porosity values
(of the order of 80%). These porous structures are obtained after
solidification of an infiltrated molten metal in a porous casting
mould. A general review concerning different phase change in por-
ous media has been proposed by [11]. More recent theoretical or
numerical analysis at the local scale have focused on the influence
of the pore geometry or the thermal conductivity of the foam
material [12–16]. Few experiments have also been carried out

[17,18]. A theoretical model analytically studied the conditions
for assuming local thermal equilibrium conditions [19]. However,
to our knowledge very few studies have been devoted to a macro-
scopic representation of liquid-solid phase change in porous media
[20–22] and the derivation of an averaged model for such a prob-
lem was still missing.

This is the objective of the present work to derive such a macro-
scopic model for solidification of a pure molten phase in an homo-
geneous porous medium. The full treatment of this problem would
imply to take into account the infiltration by the molten metal, the
displacement of the liquid-air interface and therefore to consider
four phases. In this first analysis, the complexity will be reduced
by assuming that the casting mould is fully infiltrated by the liquid
metal (no solidification during infiltration). Under these circum-
stances, the solidification is governed by diffusion and involves
three phases: the liquid and the solid metal and the mould. A vol-
ume averaging procedure is used in order to upscale the local con-
servation equations. Since the thermo-physical properties of the
liquid and solid metallic phases are close, the model is derived
under the local thermal equilibrium assumption (LTE) leading to
one energy conservation equation for an equivalent metallic phase.
On the other hand, due to several order of magnitude between the
conductivity of the metal and the sand preform a local thermal
non-equilibrium (LTNE) is retained giving rise to two coupled
energy conservation equations for the three phases. Associated
closure problems are derived and numerically solved allowing for
the determination of the effective transport properties. Finally,
the relevance of the macroscopic model is illustrated through a
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qualitative comparison with some experiments performed at the
CTIF (French research and development center, specialized in
metal casting).

2. Local problem

As previously said, the infiltration of the homogeneous mould
by a molten liquid phase is assumed to be completed. In other
words, the porous mould is saturated by a liquid phase (with no
flow) whose volume fraction is initially equal to the porosity of
the mould. The solidification process is therefore governed by a dif-
fusion process involving three phases: the liquid metal (b-phase),
the solidified metal (c-phase) and the mould (r-phase) (see
Fig. 1). In addition, the liquid and the solid densities are assumed
to be close and the shrinkage due to solidification is assumed to
be negligible. Therefore, the local energy conservation equations
are given by
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where Hb ¼ cpbTb þ Lf is the enthalpy of the liquid metal, Lf repre-
sents the heat latent and Hc ¼ cpcTc is the solid enthalpy. ki (for

i ¼ b; c;r) is the thermal conductivity of phase i. The associated
boundary conditions are written at the three interfaces locations
Abc;Abr, and Acr:

nbc � kcrTc � kbrTb

� � ¼ nbc �wbc qcHc � qbHb

� �
at Abc ð4Þ

Tb ¼ Tc ¼ Tfusion at Abc ð5Þ

Tc ¼ Tr at Acr ð6Þ

ncr � kcrTc ¼ ncr � krrTr at Acr ð7Þ

Tb ¼ Tr at Abr ð8Þ

nbr � kbrTb ¼ nbr � krrTr at Abr ð9Þ
This local problem is up-scaled in the next section.

3. Up-scaling

The macroscopic conservation equations are derived using a
volume averaging procedure [2] whose definitions and theorems
are recalled in Appendix A.

3.1. Mass conservation

Due to the solidification process, it is important to consider first
the upscaling of the metal mass conservation. For the motionless b-
phase (vb ¼ 0) we have
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Since the mould is rigid, the interfacial phase velocities wbr ¼ 0
and Eq. (10) reduces to:
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where _mb is the phase change rate. Similar average for the c-phase
gives:
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Nomenclature

Aij interface area between phases i and j (m�2)
cpk Massic heat capacity of phase k (J kg�1 K�1)
kk thermal conductivity in phase k at the pore scale

(W�1 K�1)
H Massic enthalpy of the metal quid ou pas (J kg�1)
hmk interfacial species exchange coefficients in phase k (s�1)
L macroscopic length scale (m)
li lattice vector
Lf fusion latent heat (J kg�1)
‘b pore length scale (m)
r0 characteristic size of the averaging volume (m)
Tk temperature in the phase k at the pore scale k (K)
t time (s)

wij interfacial velocity at Aij (m s�1)

Notations
hwki superficial average of Wk

hwkik intrinsic average of Wkew deviation of Wk

Greek symbols
ek volume fraction of phase k
qk density of phase k (kg m�3)

Fig. 1. Schematic representation of the mould with the averaging volume.
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