
Stochastic modeling of coupled electromechanical interaction
for uncertainty quantification in electrostatically actuated MEMS

Nitin Agarwal, N.R. Aluru *

Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois

at Urbana-Champaign, 405 N. Mathews Avenue, Urbana, IL 61801, United States

Received 20 August 2007; received in revised form 11 December 2007; accepted 16 January 2008
Available online 26 January 2008

Abstract

This work proposes a stochastic framework based on generalized polynomial chaos (GPC), to handle uncertain coupled electrome-
chanical interaction, arising from variations in material properties and geometrical parameters such as gap between the microstructures,
applicable to the static analysis of electrostatic MEMS. The proposed framework comprises of two components – a stochastic mechan-
ical analysis, which quantifies the uncertainty associated with the deformation of MEM structures due to the variations in material prop-
erties and/or applied traction, and a stochastic electrostatic analysis to quantify the uncertainty in the electrostatic pressure due to
variations in geometrical parameters or uncertain deformation of the conductors. The stochastic analysis is based on a stochastic
Lagrangian approach, where, in addition to uncertain input parameters and unknown field variables, the random deformed configura-
tion is expanded in terms of GPC basis functions. The spectral modes for the unknown field variables are finally obtained using Galerkin
projection in the space spanned by GPC basis functions. The stochastic mechanical and electrostatic analyses are performed in a self-
consistent manner to obtain the random deformation of the MEM structures. Various numerical examples are presented to study the
effect of uncertain parameters on performance of various MEMS devices. The results obtained using the proposed method are verified
using rigorous Monte Carlo simulations. It has been shown that the proposed method accurately predicts the statistics and probability
density functions of various relevant parameters.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The design and analysis of micro-electromechanical sys-
tems (MEMS) requires considering the interaction of vari-
ous physical fields such as mechanical, electrical and
possibly fluidic. In recent years, the advances in numerical
simulation methods have increased the ability to accurately
model these devices [1–4]. These simulation methods assume
that the material properties and various geometrical param-
eters of the device are known in a deterministic sense. How-

ever, low cost manufacturing processes used for MEMS
often result in significant uncertainties in these parameters
which may lead to large variation in the device performance.
Thus, in order to design reliable and efficient electrostatic
MEMS devices, it is required to consider a stochastic anal-
ysis of the coupled electromechanical interaction.

The stochastic analysis of coupled electromechanical
problem is complicated by two facts – firstly, due to the
nature of the coupling between the mechanical and electro-
static energy domains, we need to deal with geometrical
variations during the analysis, which is not straightfor-
ward, as it leads to random computational domains. Sec-
ondly, because of the multiphysics nature of the problem,
uncertainties propagate from one energy domain to
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another, and need to be considered carefully. A framework
for quantifying uncertainty for the electroosmotic and
pressure-driven flow in a microchannel, involving coupled
transport and electrostatic field equations, has been pre-
sented in [5]. In the past, the stochastic variations in vari-
ous parameters during the design of electrostatic MEMS
has been addressed using Monte Carlo (MC) simulations.
The effect of various geometrical features on the design
of a comb drive has been studied in [6] using Monte Carlo
method incorporated in the ANSYS probabilistic design
system (ANSYS/PDS). The variability in the performance
of a ceramic MEMS actuator resulting from variations in
the shape of the actuator and the air gap in the condenser,
has been studied using MC simulations in [7]. A reliability-
based analysis using the first-order reliability method
(FORM) and design optimization framework for electro-
static MEMS is presented in [8]. Since the MC based meth-
ods are statistical in nature, their accuracy depends on the
sample size. The simulations may become prohibitively
expensive, especially for the analysis of MEMS devices,
as it is expensive to solve the coupled electromechanical
problem even in the deterministic case.

The most widely used non-statistical stochastic analysis
technique is based on the approach pioneered by Ghanem
and Spanos [9], known as polynomial chaos. The basic idea
is to treat the uncertainty as a separate dimension (in addi-
tion to space and time) and to expand the field variables
along the random dimension using polynomial chaos basis
functions. Polynomial chaos is essentially a spectral expan-
sion of the stochastic processes in terms of the orthogonal
polynomials as given by Wiener’s homogeneous chaos the-
ory [10]. The homogeneous chaos expansion is based on
Hermite polynomials and converges exponentially to any
second-order random process, when the underlying ran-
dom variables are Gaussian. This idea was further general-
ized by Xiu and Karniadakis [11], to obtain exponentially
converging algorithms even for non-Gaussian random
variables. This stochastic analysis technique based on poly-
nomial chaos has been applied to model uncertainty in var-
ious problems such as computational mechanics [12,13],
diffusion [14], fluid flow [15–17] and heat conduction
[18,19].

This works presents a stochastic framework based on
generalized polynomial chaos, to handle uncertain coupled
electromechanical interaction, arising from variations in
material properties and geometrical parameters such as
gap between the microstructures, applicable to the static
analysis of electrostatic MEMS. The proposed framework
comprises of two components – a stochastic mechanical

analysis, which quantifies the uncertainty associated with
the deformation of MEM structures due to the variations
in material properties and/or applied traction, and a sto-

chastic electrostatic analysis to quantify the uncertainty in
the electrostatic pressure due to variations in geometrical
parameters or uncertain deformation of the conductors.

The stochastic analysis is based on a stochastic Lagrang-

ian approach, where the random deformed configuration is

expanded as a sum of its mean, known as the mean or ini-
tial undeformed configuration, and a random deformation
field applied to the conductors defined by the mean (or
undeformed) configuration. For the stochastic mechanical
analysis, in addition to the random deformation field, the
uncertain input parameters such as Young’s modulus,
applied traction, etc. are expanded in terms of the general-
ized polynomial chaos (GPC) basis functions. These expan-
sions are then used to compute stochastic analogues of
various quantities that appear in the large deformation
analysis. The uncertain deformation is finally obtained
using Galerkin projection in the space spanned by GPC
basis functions. The spatial discretization is done using
standard finite element method (FEM). This methodology
for quantifying uncertainty in large deformation problems
is presented in [20], and has been applied to elasto-plastic-
ity problems. For the stochastic electrostatic analysis, the
random deformation field is used to obtain a stochastic

Lagrangian boundary integral equation [21], which can be
solved for uncertain surface charge density. The random
surface charge density is discretized both in the random
dimension and space using GPC and classical boundary
element method (BEM), respectively. The computed uncer-
tain surface charge density is then used to obtain the ran-
dom electrostatic pressure. These stochastic mechanical
and electrostatic analyses are performed in a self-consistent
manner to obtain the random deformation of the MEM
structures. We consider several numerical examples to
study the effect of uncertain parameters on performance
of various MEMS devices, highlighting the features of
the proposed methodology. The results obtained using
the proposed method are also verified using rigorous
Monte Carlo simulations. It has been shown that the pro-
posed method accurately predicts the statistics and proba-
bility density functions of various relevant parameters.

The paper is organized as follows: in Section 2 we pres-
ent the most widely used spectral expansion method for
random fields – the generalized polynomial chaos (GPC)
expansion and various techniques required to employ
GPC expansion as a stochastic discretization technique.
In Section 3 we present the deterministic coupled electro-
mechanical problem. In Section 4 we then present the sto-
chastic electrostatic and mechanical analysis based on the
stochastic Lagrangian approach and finally describe the
formulation for the stochastic coupled electromechanical
problem. In Section 5 we present some numerical examples
to demonstrate the proposed methodology to quantify the
effect of uncertain material properties and geometrical
parameters on the performance of electrostatic MEMS
devices. We finally conclude the discussion in Section 6.

2. Spectral stochastic representation

Let D be a domain in Rd ; d ¼ 1; 2 and x 2 D. Let
ðH;B;PÞ denote a probability space, where H is the set
of elementary events, B is the r-algebra of events and P
is the probability measure. The symbol h specifies an
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