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a b s t r a c t

The scaled boundary finite element method (SBFEM) combined with isogeometric analysis (IGA) is pro-
posed to solve the two-dimensional steady-state heat conduction problems in complex geometries. The
main benefit of SBFEM is that the spatial dimension of analyzed domain is reduced by one and the solu-
tion is analytical in the radial direction. In this method, only the boundary of the computational domain
requires discretization with finite elements leading to the reduction of computational efforts. However,
SBFEM suffers from the finite element method related drawbacks. In the case of the complex geometric
shapes, a large number of elements are necessary to obtain the exact representation of geometry in finite
element method. Isogeometric analysis is a novel numerical technique based on the non-uniform rational
B-splines (NURBS), where the geometry can be exactly represented. Moreover, this technique yields supe-
rior numerical accuracy, efficiency and convergence property in comparison to finite element method. In
the proposed method, the segments of domain boundary with complex geometries are described with
NURBS basis functions in IGA, while the straight segments of boundary are represented with polynomial
basis functions as in the conventional SBFEM. Thus, the present approach combines the advantages of
both SBFEM and IGA. The heat conduction problems of complex geometry can be more effectively han-
dled with the proposed method considering the prescribed heat fluxes and temperatures on side-faces.
The accuracy and efficiency of the proposed formulation are demonstrated by modeling five numerical
examples involving the complicated geometry.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis of heat conduction problems extensively exists in
many science and engineering fields including environmental
science, chemistry, civil engineering, and cooling of electronic
and mechanical equipment, etc. Due to its important significance
in many engineering applications, the accurate and efficient calcu-
lation for this issue is essential in the study of the heat transfer. As
the analytical solutions for the problems with complex geometry
and material properties are generally not available, the numerical
techniques require development and extension for the heat

conduction problems. Thus, in recent years, various numerical
methods have been developed to cope with the heat transfer prob-
lems ranging from the finite element method (FEM) [1–4], finite
difference method (FDM) [5,6], boundary element method (BEM)
[7,8], meshless method (MM) [9,10], and scaled boundary element
method (SBFEM) [11,12]. There is also the element free Galerkin
(EFG) method, which is applied to study the heat conduction prob-
lems by Singh et al. [13]. Wu et al. exploit the meshless local
Petrov-Galerkin (MLPG) to analyze the steady-state heat transfer
problems in two-dimensional space [14]. The reproducing kernel
partial method (RKPM) is also applied to analyze the two-
dimensional unsteady heat conduction problems [15].

Among all the numerical method mentioned above, the SBFEM,
originally introduced by Wolf and Song [16], is a semi-analytical
technique which inherits the main advantages of FEM and BEM
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with unique features of its own. This technique weakens the gov-
erning differential equations along the circumferential direction
and solves analytically in the radial direction. In the conventional
finite element analysis, the whole computational domain requires
to be discretized. Nevertheless, only the boundary is discretized in
SBFEM, which reduces the spatial dimension by one and spares the
time in mesh generation and computing. Moreover, compared to
BEM, no fundamental solution is required in SBFEM. Thus, SBFEM
has been successfully applied to many practical problems, such
as soil-structure interaction [17–22], fracture mechanics [23–25],
piezoelectric materials [26–28], potential flow [29,30], sloshing
problems [31–33], dynamics problems [34–37], elasto-plastic
problems [38], acoustic problems [39], wave and porous interac-
tion [40], electromagnetic problems [41], and seepage problems
[42–44].

However, in the SBFEM, the boundary of computational domain
is discretized with elements, which means the analysis model is
generated by the approximation to the geometric model using
the polynomials interpolation. Such an approximation between
two models causes loss of accuracy and waste of time in mesh gen-
eration, especially for complex geometries, such as the smooth and
curved shapes and circles. In order to reduce the error, a consider-
able number of elements are generally required to capture the
exact representation in FEM.

Non-uniform rational B-spline (NURBS) is known as the stan-
dard technology for geometry representation in Computer-Aided
Geometric Design (CAGD) because of its ability to exactly represent
arbitrary free-form shapes in compact forms. Recently, the NURBS-
based isogeometric analysis (IGA) developed by Hughes et al. [45]
has turned out to be an efficient alternative to the classical FEM.
The basic concept of IGA is to use the NURBS basis functions which
can exactly represent the geometry for the numerical simulation.
By utilizing the same NURBS basis functions for the geometry
and field variables, the geometrical model described by NURBS

can be direct applied to the analysis model without losing the
exactness of geometry. No extra finite-element model that approx-
imates the geometrical model is required. In addition, many desir-
able properties that NURBS basis functions process can be
exploited to the numerical calculation. The higher degree of
smoothness of NURBS can be applied to the high-order differential
equations including plate and shell problems. Also any continuity
of NURBS basis functions can be obtained by knot multiplicity,
which is not the case for FEM. Due to these attractive merits,
NURBS-based isogeometric analysis is applied with great success
to the study of fluids [46], structures [47], turbulence [48], phase
field modeling [49], fluid–structure interaction [50], contact prob-
lems [51], and optimization [52].

In order to inherit the advantages of SBFEM and IGA, the NURBS
basis functions are employed to represent the complex boundary
shape in the circumferential direction while the straight segments

Fig. 1. (a) B-spline basis functions for p ¼ 3 and open knot vector
f0;0;0;0;0:25;0:5;0:75;1;1;1;1g. (b) B-spline curve with seven control points.

Fig. 2. NURBS mapping for a one-patch surface model.

Fig. 3. A quadratic finite elements model of the conventional FEM and isogeometric
analysis. (a) Finite elements of FEM. (b) Finite elements of isogeometric analysis.
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