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a b s t r a c t

In current framework, an analytical treatment for mixed convection flow of an electrically conducting
Oldroyd-B fluid adjacent to a vertical stretchable surface is provided. A non-Fourier heat flux approach
is employed to formulate the energy balance relation. Using similarity approach, the governing equations
are changed to a set of non-linear differential equations which are tackled by well-known analytical
approach called homotopy analysis method (HAM). Appropriate range of auxiliary parameter is obtained
by plotting the so called �h-curves. Velocity and temperature profiles are computed and elucidated in the
existence of new physical mechanism, that is, thermal relaxation time in current research. The main
implication of this research is that the relaxation and retardation times considerably alter the flow behav-
ior near the surface. The results predict that heat penetration into the fluid reduces as the relaxation time
of heat flux enlarges. Furthermore, the change in temperature gradient at the surface with increasing
thermal relaxation time appears similar in magnitude at all considered Prandtl numbers. In assisting flow
regime, we noticed a growth in velocity and temperature profiles for increasing strength of buoyancy
force.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Non-Newtonian flow behavior is prevalent in most of the chem-
ical and allied processing industries. Viscoelastic fluids refer to
those non-Newtonian liquids which display both viscous and elas-
tic responses to deformation. In such liquids, shear stress is not
only the function of instantaneous shear-rate but also the memory
function of shear rate history. The shear-rate gradually diminishes
with time once the shear stress is removed. Common examples
include synthetic polymers, liquid crystals, coatings, inks, food
products, ceramics, detergents, petroleum oil additives, molten
plastics and biological fluids. Maxwell fluid model is considered
as simplest viscoelastic model that combines viscous and elastic
responses to deformation in terms of fluid relaxation time.
Oldroyd-B fluid is another popular viscoelastic fluid model which
has tendency to describe stress relaxation, creep and normal stress
phenomena for many polymeric liquids. Bhatnagar et al. [1] pro-
vided series approximations for the flow of Oldroyd-B fluid near
a deforming surface with variable free stream velocity. Oldroyd-B
fluid flow in the region of stagnation-point on a stretchable surface
was studied by Sajid et al. [2] using numerical approach. Shehzad
et al. [3] reported analytical solutions for Oldroyd-B fluid flow

caused by a bi-directional stretching sheet with temperature
dependent thermal conductivity. Abbasbandy et al. [4] computed
analytical solutions for Falkner-Skan flow of Oldroyd-B fluid along
a stationary plate. HAM-Pade technique was opted to accelerate
the convergence rate of series solutions. Motsa and Ansari [5] dis-
cussed numerical tackling for unsteady motion of Oldroyd-B fluid
driven by an impulsively stretching plate. Also, Awad et al. [6]
described the flow of Oldroyd-B nanofluid past a deforming sheet
considering passive control of nanoparticle concentration at the
boundary. They solved the governing equations of motion by spec-
tral relaxation method. Effects of thermophoresis on the buoyancy
assisting flow of Oldroyd-B fluid near a radiative surface were elu-
cidated by Shehzad et al. [7] using analytical approach. Represen-
tative works in this direction can be sought through [8–13].

Heat transfer mechanism abounds in widespread industrial
processes involving cooling towers, heat exchangers, space cooling,
distribution of temperature/moisture over groove fields etc.
Although the classical Fourier heat flux law [14] is preferred to
model energy transfer in many practical situations but it has a
major drawback that it does not fulfill the well-known causality
principle. Cattaneo [15] came up with a generalization of the Four-
ier law by including the aspect of thermal relaxation time which is
the time required to set up steady state heat conduction after the
temperature difference is assigned. Mathematical framework of
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Cattaneo [15] gives rise to telegraph equation which has been
found inadequate in describing heat transfer mechanism.
Researchers have shown that the telegraph equation does not pre-
serve the non-negativity of solutions and the maximum-minimum
principle is not valid for the telegraph equation even in one-
dimensional case [16–18]. Other physical inconsistencies can be
found in the paper by Bright and Zhang [19] and in the book by
Zhang [20]. To fulfill objectivity constraint, Christov [21] modified
the Cattaneo equation by replacing the usual time derivative with
the upper-convected derivative. Straughan [22] firstly used
Cattaneo-Christov approach to analyze convective heat transfer
in a Newtonian fluid flow. Uniqueness of solutions for some incom-
pressible flow problems were proved by Tibullo and Zampoli [23]
considering Cattaneo-Christov theory. As also stated in [22,23],
Cattaneo-Christov model allows for the heat transport via propaga-
tion of thermal waves at finite speed. Such kind of heat transfer
description via wave phenomenon rather than simply by diffusion
has importance in applications including nanofluid flows and the
modeling of skin burn injury. Haddad [24] figured out thermal
instabilities associated with the Brinkman porous layer influenced
by thermal relaxation time. Han et al. [25] analytically described
the slip flow of viscoelastic fluid inspired by Cattaneo-Christov
heat flux using homotopy approach. Their results indicate signifi-
cant implications of thermal relaxation time on near-surface fluid
temperature. Rotational effects in Maxwell fluid flow near a
deforming sheet with Cattaneo-Christov heat conduction were
described by Mustafa [26]. Characteristics of thermal relaxation
time for Maxwell fluid flow bounded by an exponentially deform-
ing non-isothermal surface were numerically explored by Khan
et al. [27]. Hayat et al. [28] performed an analytical investigation
for rotating flow of Jeffery fluid driven by deformable surface.
Cattaneo-Christov model for Sakiadis flow of Maxwell fluid was
examined by Abbasbandy et al. [29] utilizing two different numer-
ical approaches. The influence of non-Fourier heat conduction for
Sisko fluid flow caused by a permeable non-linearly deforming
sheet was elucidated by Malik et al. [30] using homotopy approach.
Some recent attempts in this direction can be stated through
[31–35].

In order to make subsequent development in literature, we
model the buoyancy effects on Oldroyd-B fluid flow which results
from the stretching of a non-isothermal vertical surface. A novel
Cattaneo-Christov heat flux approach is applied to formulate
energy balance relation. Unlike previous studies, we establish
correct formulation for magnetic and buoyancy force terms in
case of Oldroyd-B fluid. Employing usual transformations, the
local similarity equations are formed which are tackled by a
reliable homotopy analytical approach suggested by Liao
[36,37]. In HAM framework, the governing non-linear equations
are transformed into infinite linear sub problems. HAM provides
huge freedom to choose appropriate base functions and linear
operators to approximate non-linear problem. This is important
in the situation where convergence is largely dependent on the
appropriate choice of initial guess. In contrast to the other analyt-
ical methods such as Adomian Decomposition Method (ADM),
d-expansion method and homotopy perturbation method (HPM),
the convergence in HAM can be accelerated through an artificial
convergence control parameter. It means that the method has a
potential to tackle both weakly and strongly nonlinear problems.
The impacts of emerging parameters are elucidated graphically in
both assisting and opposing flow regimes. An important finding of
this research is that thermal relaxation effects considerably
alter the flow and temperature fields. A comparison of current
computations with those of the published articles is also given
in a limiting situation.

2. Mathematical modeling

Let us consider the flow of viscoelastic fluid obeying Oldroyd-B
model adjacent to a heated or cooled vertical non-isothermal sur-
face. We choose stationary Cartesian coordinate frame such that
the coordinates x extends along the surface and y is normal to it.
Flow is initiated due to stretching of the surface in vertical direc-
tion with velocity uw ¼ ax, where a > 0 denotes the stretching rate.
It is assumed that wall temperature Tw varies with distance x
according to TwðxÞ ¼ T1 þ bx in which b is constant whose value
depends on the thermophysical properties of the fluid and T1 rep-
resents the quiescent fluid temperature (see Fig. 1). We take into
account the Cattaneo-Christov model in order to incorporate the
aspect of thermal relaxation time. The conducting Oldroyd-B fluid
is permeated by uniform magnetic field strength B0 ðTeslaÞ normal
to the stretching boundary. In low Reynolds number approxima-
tion, we ignore induced magnetic field in comparison with applied
magnetic field. Electric field is assumed absent. In buoyancy
induced flows, density variations cannot be totally neglected
because they produce buoyancy gradients which are responsible
for fluid motion. Here we utilize the Oberbeck-Boussinesq approx-
imation [38,39] which involves two main assumptions. Firstly, the
density q is a linear function of temperature T. Secondly, the den-
sity variations are assumed to be sufficiently weak such that they
can be ignored everywhere in the governing equations with the
exception that density differences are retained in the buoyancy
term.

In view of the aforementioned assumptions, the boundary layer
equations governing the mixed convection flow of Oldroyd-B fluid
can be cast into the following forms:
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where m represents the kinematic viscosity of the fluid, k1 stands for
fluid relaxation time, k2 for fluid retardation time, Cp represents the
specific heat capacity and q the heat flux vector. The term in the
square bracket in Eq. (2) represents the positive (upward) buoyancy
force while the term with B0 represents Lorentz force. Cattaneo-
Christov model for heat flux is given by [21]:
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in which k represents the fluid thermal conductivity and k3 denotes
the thermal relaxation time. Heat flux vector q can be eliminated
from Eqs. (3) and (4) to yield the following:
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