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a b s t r a c t

In the paper, the problem of biological tissue freezing is discussed. In contrast to the previously presented
models based on the Pennes equation, the thermal interactions between the cryoprobe tip and soft tissue
are described using the dual-phase lag model (DPLM). This model contains two delay times (the relax-
ation and thermalization times) and in this way, the finite velocity of the thermal wave is considered.
The model of the freezing process is based on the introduction of a parameter called ‘substitute thermal
capacity’ to the dual-phase lag equation. At the stage of numerical computations, the explicit scheme of
the finite difference method is used. In the final part of the paper the examples of the computation are
shown. A comparison with the solution resulting from the adoption of the Pennes equation and also
the model verification with the experimental data are presented in the final part of the paper.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Numerical modeling of biological tissue freezing can be a very
effective tool supporting the preparation of cryosurgical treatment
procedure. The results of computer simulation allow for the
assumed input data to observe the time-dependent shape of frozen
region and its dimensions, the temporary temperature distribution
in the domain considered, etc.

The quality and reliability of the results obtained depends on
the selection of the correct mathematical model of the process
and the introduction of the adequate input data. So far, the model
of thermal processes proceeding in the domain of soft tissue, as a
rule, was based on the Pennes equation – e.g. [1–6]. As is well
known, the Pennes equation (in the case of transient problem) is
the parabolic PDE supplemented by two terms called the perfusion
heat source and the metabolic heat source. The mathematical form
of the perfusion heat source results from the assumption that the
soft tissue is supplied by a big number of capillary blood vessels
uniformly distributed in the tissue domain. The consideration of
the large, thermally significant blood vessels requires the introduc-
tion of the so-called vascular models [7–9], but these problems will
not be discussed here. The metabolic heat source can be treated as
a constant value (but different for the different types of activity,

e.g. rest, physical effort) or the temperature-dependent function
[10].

It is well known that the Pennes’ equation was based on the
classical Fourier’s law that depicted an infinitely fast propagation
of a thermal wave. In reality, accumulating enough energy to trans-
fer to the nearest element would take time in the process of heat
transfer [11]. So, the lag time referred to as ‘a relaxation time’
was introduced by Cattaneo [12,13] and the appropriate energy
equation (a hyperbolic PDE) is known as the Cattaneo-Vernotte
equation. This equation is also used in the case of bioheat transfer.
For example, the experimental investigation made by Roetzel et al.
[14] showed that the value of relaxation time is of the order of 2 s
for processed meat. In literature, the other values of this parameter
can be also found (see: [15,16]).

Recently it is said that the better approximation of the bioheat
transfer processes proceeding in the biological tissue domain can
be obtained using the dual-phase lag approach. Generally speaking,
the DPL model describes a macroscopic temperature wherein an
inner microscopic tissue structure is taken into account by an
introduction of two delay times to the energy equation (e.g. [17]).

The generalization of the Fourier law in which both the relax-
ation time sq and thermalization time sT appear leads to the
dual-phase lag equation. The energy equation contains the second
derivative of temperature with respect to time and also the mixed
derivative both in time and space. The basic area of application of
this equation is the micro-scale heat transfer. For example, if one
considers the interactions between the ultrafast laser pulse and
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thin metal films then the Fourier parabolic equation is inadequate.
Because of an extremely short duration, extreme temperature gra-
dients and geometrical features of the domain considered, the lag
times must be taken into account [17–20].

The number of papers concerning the DPL models applications
in the scope of bio-heat transfer modeling is not so large. In
2005, Antaki published the paper [21] in which the DPL model
has been used for the analysis of thermal processes proceeding in
the processed meat domain. The problems of the heat conduction
in the domain of living tissue subjected to an external heat source
was analyzed by Liu [22]. In 2009, Liu and Chen [23] applied the
DPL equation for the case of hyperthermia treatment modeling.
The similar subject matter is discussed in the papers [24,25]. In
particular, the authors consider the thermal damage to biological
tissues caused by the laser irradiation. The various numerical
aspects of DPLE solving are also analyzed. For example, in 2010,
Majchrzak presented the solution of the dual-phase lag model of
bioheat transfer using the general boundary element method
[26], while the similar algorithm for 3D problems has been dis-
cussed in [27].

Recently, some works concerning the generalized dual-phase
lag model based on the theory of porous media have appeared.
The tissue is treated as a porous medium divided into two regions
corresponding to the blood vessels and extravascular region (tis-
sue). The relative proportions are determined by the parameter
called ‘a porosity’. The mathematical description is created by the
DPL equation containing this parameter. The phase lag times are
expressed in terms of the properties of blood and tissue, the inter-
phase convective heat transfer coefficient and the blood perfusion
rate [28]. Generally speaking, a two-temperature model is consid-
ered. The tissue temperature is determined by the GDPL equation,
while the blood temperature results from the additional ordinary
differential equation. In the specific case this model can be used
assuming the constant blood temperature [28]. The two-
temperature model has been successfully used for numerical mod-
eling of the tissues heating (e.g. [29–33]).

The analysis of the strong tissue cooling leads first to freeze the
extravascular medium [34–36]. So, this fact suggests to take into
account different temperatures of freezing inside the biological
cells and in the extravascular region. It seems, that the application
of two-temperature models to describe the freezing process will
allow for a more accurate analysis of heat transfer in human tissues
subjected to the low temperatures [37].

In the case of freezing process modeling, the additional internal
heat source controlling the evolution of freezing heat must be

introduced [38,39]. As a rule, it is assumed that the capacity of this
source is proportional to the local value of freezing rate [40,41].

The modeling of the freezing on the basis of the Pennes model
can be realized in different ways. The comprehensive overview of
the problems related to this process is presented in [42]. The math-
ematical model can be written in the classical form (the unknown
function corresponds to the temperature) [43–45] but the enthalpy
function (more precisely, the mixed enthalpy-temperature
approach [46,47] and the Kirchhoff transformation [48] can also
be considered. One can find the works (e.g. [46]) in which the
model of freezing proceeding in the interval of temperature is sub-
stituted by the model concerning the pure substances (the Stefan
problem). The freezing front corresponds, as a rule, to the border
temperature between the frozen region and the intermediate zone.
It seems that this temperature should be defined in any other way
using the generalized theorem about the mean value of definite
integral [38].

In the opinion of the authors of this paper, the most effective
and simple at the stage of numerical modeling is the approach
called the ‘one domain method’, also known as a ‘fixed domain
method’. The essence of this method is a certain way of joining
the internal heat source resulting from the freezing process to
the left hand side of the energy equation and then in the place of
volumetric specific heat the parameter C(T) called ‘a substitute
thermal capacity’ (STC) appears. The STC is especially convenient
in the case when the phase change proceeds in an interval of tem-
perature (biological tissues, alloys, solutions, etc.) The problems of
the above parameter definition are discussed in detail in
[38,39,49,50]. Generally speaking, one can assume the
temperature-dependent function describing the local and tempo-
rary frozen state fraction S (T) between the border isotherms at
the neighborhood of the point considered. The knowledge of this
function allows one to define the STC (see: next chapter). The other
approach depends on the ‘a priori’ assumption of the mathematical
form of STC (e.g. a bell-type function), but this function must fulfill
the condition concerning the equality of the STC integral between
the border temperatures and the change of physical enthalpy
resulting from the evolution of the volumetric freezing heat and
the cooling of the intermediate phase from the upper to lower tem-
peratures liming the intermediate phase sub-domain [38]. The
substitute thermal capacity for the intermediate zone sub-
domain is, as a rule, assumed in the form of the bell-type function
(e.g. [39,51]) or as the constant value being the sum of the interme-
diate zone volumetric specific heat and the so-called spectral latent
heat (e.g. [38]).

Nomenclature

c volumetric specific heat [J/(m3 K)]
C substitute thermal capacity [J/(m3 K)]
cB specific heat of blood [J/(kg K)]
h, k geometrical mesh steps [m]
L volumetric latent heat [J/m3]
Qm metabolic heat source [W/m3]
q heat flux vector [W/m2]
R radius of tissue domain [m]
R1 cryoprobe radius [m]
S frozen state fraction
T1, T2 border temperatures [�C]
TB arterial blood temperature [�C]
TD cryoprobe tip temperature [�C]
Tp initial tissue temperature [�C]

wB blood perfusion rate [kg/(m3 s)]
w0 initial cooling rate [m/s]

Greek letters
k thermal conductivity [W/(m K)]
sq relaxation time [s]
sT thermalization time [s]

Subscripts
N natural state
P intermediate phase
F frozen region
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