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a b s t r a c t

We derive a rule for the reconstruction of the internal heat transfer coefficient hint of a pipe, from tem-
perature maps collected on the external face. The pipe is subjected to internal heating by connecting
two electrodes to the external surface. To estimate hint we apply the perturbation theory to a thin plate
approximation of a boundary value problem for the stationary heat equation.

� 2016 Published by Elsevier Ltd.

1. Introduction

The present paper deals with the inverse heat conduction prob-
lem (IHCP) in the form studied in [4,6].

Let S ¼ fðr cosð/Þ; r sinð/ÞÞ; r 2 ½L� a; L�;/ 2 ½0;2pÞg be the cross
section of a helically coiled cylindrical tube C of radii L (external)
and L� a (internal) with a � 2pL. Actually, C is both a thermal
and electrical conductor like the stainless steel type AISI 304 one
considered in [4]. The experimental set up is fully described in
[4] and summarized in the next paragraph.

Several engineering applications involve curved pipes carrying
a moving fluid, as it happens in heat exchangers or in devices used
for transferring heat in heat engines and in industrial equipment.
Therefore, the understanding of the relationship among the
dynamic properties of a fluid flowing in a pipe (in particular its
velocity profile) and the resulting temperature distribution inside
it is of great importance. The first theoretical study concerning
the flow in a curved pipe is dated back 90 years [9], but a system-
atic study of heat transfer in curved pipes has been conducted
40 years later, both for a fluid in the laminar regime [16] and in
the turbulent region [17]. The problem of heat transfer in curved
tubes has been recently the subject of a review paper [19]. In
essence, the main effect of curvature is the emergence of a sec-
ondary flow due to centrifugal forces. This in turn produces a

deformation of the velocity field (parabolic in the laminar regime
in a straight tube) shifting the maximum axial velocity towards
the outer side of the pipe bend. As a consequence, the temperature
distribution is distorted alike.

The conductor C is subjected to a uniform heat generation Q
obtained by the Joule effect connecting a couple of electrodes
located at its ends. A fluid fills the internal helicoidal cylinder of
radius r ¼ L� a and flows smoothly in it. The fluid exchanges heat
with the conductor C through its inner surface. To minimize the
heat exchange with the environment, C was thermally insulated.
A small portion of the external tube wall was made accessible to
an infrared camera by removing the insulating layer, and it was
coated by a thin film of opaque paint of uniform and known
emissivity.

The problem, formulated in [4,6], consists in recovering the
internal heat transfer coefficient (HTC) from thermal maps collected
on the accessible portion of the external face of C. In the case of a
laminar flow along an helically coiled cylindrical cavity, we
observe that the HTC is essentially the same for all orthogonal sec-
tions of C so that, as pointed out in [4], the model is intrinsically
two dimensional and our analysis can be reduced to the section S
only. Furthermore, the HTC deviates from a background value (cor-
responding to the case of the straight cylinder) and takes an asym-
metrical shape determined by the fluid dynamics inside C.

The temperature of the specimen reaches a reasonably station-
ary regime for t P Tlim whose value is related to the diffusivity of
the tube C. For this reason, as suggested in [4], we focus our atten-
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tion to a stationary boundary value problem (BVP) for Poisson’s
equation in S which models the steady-state energy balance.

In cylindrical coordinates, the BVP is made up by Laplace’s
equation in polar coordinates

urr þ 1
r
ur þ 1

r2
u// þ Q

j
¼ 0 ð1Þ

in S and the boundary conditions

jurð/; LÞ þ ahextðuð/; LÞ � UextÞ ¼ 0 ð2Þ

�jurð/; L� aÞ þ ahintðuð/; L� aÞ � UintÞ ¼ 0 ð3Þ
for / 2 ½0;2pÞ.

Here, j is the thermal conductivity of C; ahint and ahext are the
heat transfer coefficients (internal and external respectively). The
temperature of the outer environment is Uext while the bulk (inter-
nal) temperature is Uint . We are able to take temperature maps of
the external surface by means of an infrared cameras. In our 2D
context, these maps reduce to positive functions of one angular
real variable / 2 ½0;2pÞ.

We refer to the BVP (1)–(3) as to the direct model under which
our inverse problem will be formulated. More precisely, in this
paper we produce an approximated explicit solution of the follow-
ing inverse problem:

IP. Suppose that we know the geometrical parameters a and L,
the heat source Q, the external heat transfer coefficient ahext , the
conductivity j. Given one temperature map �uð/Þ of the external
boundary of S, we must identify the internal heat transfer coeffi-

cient ahint .
The BVP (1)–(3) has a unique stable solution when

j;Q ;Uint ;Uext; ah
int and ahext are known (see for example [21]). In

Appendix we prove that the inverse problems IP has a unique
solution.

Problem IP belongs to the quoted class of IHCP which, in turn, is
included in the wider family of inverse problems in partial differ-
ential equations. This kind of problems are approached usually
through regularized optimization (compare also [4,6]). Here we
choose a different road and use the thinness of S to expand temper-

ature u and unknown hint in powers of � ¼ a
L. In this way, we obtain

a perturbative hierarchy from which we derive a formal explicit
approximation of HTC.

Methodological and bibliographical remark. A very complete and
up-to-date book about regularization of linear and nonlinear
inverse problems is [10]. In our opinion, useful references about
theoretical foundations and different way to solve IHCP are: [20]
(mathematical foundation of ill-posedness of IHCP), [11]

(numerical analysis of Cauchy problem for heat equation), [3]
(the fundamental book about IHCP), [2] (seminal paper in the field
of thermal imaging of unknown boundary), [18] (still very useful
book about numerical methods for IHCP, each chapter include
complete references at the date), [15] (thin plate approximation
to detect damaged boundaries), [1] (a rich survey about optimiza-
tion and iterative methods for IHCP), [14] (thin plate approxima-
tion to recover HTC in a simplified framework), [7] (a stability
estimate for HTC identification), [5] (application of domain deriva-
tive to boundary identification), [22] (stability estimates), [12]
(variational methods to estimate HTC).

1.1. Short description of our procedure and results

Since we assumed a � 2pL, any solution of (1)–(3) can be
regarded as a function of a small adimensional parameter � ¼ a

L.
Since we are interested in the MacLaurin series of u in �, it is help-
ful to change variables in order to define u in a rectangular domain
that does not depend on a. Hence, we shift and rescale r so that the
radial variable is transformed into the cartesian vertical one f ¼ L�r

a .
Also, we have @u

@r ¼ � 1
a

@u
@f and 1

r ¼ 1
Lð1��fÞ. The domain S in the new

variables is the rectangle

~X ¼ ½0;2pÞ � ½0;1�
where (4)–(6) becomes

uf;f � �
1

ð1� �fÞuf þ �2
u//

ð1� �fÞ2
þ �2

Q
~j
¼ 0 ð4Þ

~jufð/;1Þ þ �2hintðuð/;1Þ � UintÞ ¼ 0 ð5Þ

�~jufð/;0Þ þ �2hextðuð/;0Þ � UextÞ ¼ 0 ð6Þ

with adiabatic periodic conditions u/ð�p; fÞ ¼ u/ðp; fÞ ¼ 0 for

f 2 ½0;1� on the vertical sides of ~X. Here and in what follows, ~j ¼ j
L2
.

We expand u and hint in powers of � and plug them into the BVP
(4)–(6). In this way we obtain a perturbative hierarchy of relations
amongst their coefficients. We solve these relations with respect to

the coefficients of hint . This procedure is called thin plate approxi-
mation and is borrowed from [14] where it was applied to a similar
problem for Laplace’s equation in a thin rectangle.

In Section 2, we derive explicitly hint
0 . . . hint

3 so that the following
explicit finite expansion of the internal heat transfer coefficient

ahintð/Þ ¼ ahint
0 ð/Þ þ a�hint

1 ð/Þ þ a�2hint
2 ð/Þ þ a�3hint

3 ð/Þ þ Oð�4Þ
ð7Þ

Nomenclature

Parameters
C helically coiled cylindrical tube
S cross section of C
L external radius of S
L� a internal radius of S
� ¼ a

L thickness-to-radius ratio

ahint internal heat transfer coefficient
Uint internal temperature

ahext external heat transfer coefficient
Uext external temperature
Tlim time required to reach stationary regime
Q constant heat generated by a couple of electrodeseX ¼ ½0;2pÞ � ½0;1� image of S after normalization of z

j thermal conductivity
~j ¼ j

L2
normalized conductivity

hk coefficients of the expansion of hint in powers of �
uk coefficients of the expansion of u in powers of �

Acronyms
BVP Boundary Value Problem
IHCP Inverse Heat Conduction Problem
HTC Heat Transfer Coefficient
IP Inverse Problem
TPA Thin Plate Approximation
FEM Finite Elements Method
LOESS LOcal regrESSion
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