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a b s t r a c t

A new Controllable Structure Generation Scheme (CSGS) based on discrete Gaussian quadrature space
and velocity is presented and used to generate multiple-phase random isotropic homogenous and
shape-constrained anisotropic heterogeneous structures. The primary advantage of the new CSGS over
the existing random structure generation growth method is the ability to model a wide variety of struc-
tures by controlling the shape through relatively simple constraint indexes. The growth speed probability
function is introduced to control the mesoscopic porosities and mixture/separation of material phases.
The model is applied to generate four packed structure types (shapeless random, separated solid shapes,
separated random-filled shapes, and random-mixture-filled shapes). Three-dimensional steady and tran-
sient thermal diffusion are simulated by Non-Dimensional Lattice Boltzmann Method (NDLBM). The
steady state results are compared to measured data available in the published literature. The transient
results reveal how the mesoscopic shape of a structure impacts thermal diffusion. With equivalent
macroscopic volume fractions, structures with higher mesoscopic volume fractions of high conductivity
phases possess higher effective thermal conductivity/diffusivity because there is greater connectivity of
the higher conductive material at mesoscopic scale.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Three dimensional (3D) thermal diffusion in anisotropic hetero-
geneous media is a challenging problem because of the variation in
length scales and material properties of porous media. Anisotropic
heterogeneous media include microscopic, mesoscopic, and
macroscopic length scales corresponding to the scales of a single
material particle, material particle groups, and the minimum
external length. The geometric shape can vary with length scale
and is not always isotropic [1]. When the particle or grouped par-
ticle size of a material phase is much smaller than the macroscopic
length scale, thermal diffusion can be considered homogeneous
[1]. The effects of the mesoscopic size and shape are insignificant
only for material diffusivity ratios between 1 and 3.5 [2,3].

To understand the physical properties of a heterogeneous
porous medium, the characteristic length scales and shapes of

complex structures must be considered. Several techniques have
been proposed to generate 3D pore structures from spatial infor-
mation derived from 2D images, such as the Gaussian filtering
method extended by Quiblier [4] from 2D images to 3D reconstruc-
tions. Fourier transforms were later introduced to improve the
computational efficiency [5]. More detailed information was added
by the pore architecture models and pore analysis tools developed
by Wu et al. [6]. To obtain the structure of a porous medium inde-
pendent of imaging, a simplified statistical based method is neces-
sary. Wang [7] developed a random structure generation-growth
method named the quartet structure generation set (QSGS). The
QSGS generates a random packed porous medium defined by four
parameters: seed probability, self-growth probability, interactive-
growth probability, and volume fraction of each phase.

At isotropic growth speed, both the self-growth probability and
the interactive-growth probability are related to the Gaussian
weighting factors for discrete Gaussian quadrature space and
velocity. Thus, determination of both self-growth and interactive-
growth probabilities from the discrete Gaussian quadrature space
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and velocity are required to reveal the underlining physics of mate-
rial growth. Also a seed probability should be determined as
opposed to using an arbitrary number as was used in QSGS [7].
Additionally, shape constraints have to be introduced to describe
the mesoscopic shapes and sizes of the material particle groups
to accurately model anisotropic heterogeneous porous media. To
address the requirements discussed above, we developed a gener-
alized Controllable Structure Generation Scheme (CSGS) to gener-
ate both random isotropic homogeneous and shape-constrained
anisotropic heterogeneous multiple-phase structures.

In the present study, the new CSGS based on discrete Gaussian
quadrature space and velocity is presented. The 3D thermal diffu-
sion for different types of structures is simulated by the Non-
Dimensional Lattice Boltzmann Method (NDLBM) [8–10] based on
the same discrete space and velocity set. The results provide a uni-
form tool for the investigation of thermal diffusion in porousmedia.

2. Discrete Gaussian quadrature space and velocity

Simulations of porous media are based on discrete space with a
lattice mesh. To speed up the computation, discrete velocity fields
are applied [11,12]. Based on the dimensionality of the space, there
are a variety of discrete Gaussian quadrature space and velocity sets
with corresponding Gaussian weighting factors. Here, we discuss
the discrete Gaussian quadrature space and velocity sets in two-
dimensional (2D) and three-dimensional (3D) spaces, referred to
as D2Q9 [15,16] and D3Q27 [17], respectively. Other discrete Gaus-
sian quadrature space and velocity sets such as D2Q5 and D3Q19
are subsets of 2D and 3D spaces respectively [13,14]. In 2D space,
the dimensionless discrete velocity set for the D2Q9 lattice mesh is

c�a ¼
ð0;0Þ a ¼ 0;
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and the corresponding Gaussian weighting factors are
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In 3D space, the dimensionless discrete velocity set for the
D3Q27 lattice mesh is
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and the corresponding Gaussian weighting factors are
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8=27; a ¼ 0
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The structure generation scheme and the non-dimensional lat-
tice Boltzmann method are based on the above discrete Gaussian
quadrature space and velocity sets. The sets are combined
smoothly through physically meaningful dimensionless governing
parameters.

3. Controllable structure generation scheme

If a space is filled by Nps materials, the volume fraction of mate-
rial phase n at the position xðx; y; zÞ is

PðnÞ
ðxÞ ¼

V ðnÞ
ðxÞPNps

m¼1V
ðmÞ
ðxÞ

: ð5Þ

Nomenclature

cp specific heat capacity, J/kg K
cs lattice speed of sound, m/s
c mesoscopic velocity scale, m/s
c discrete mesoscopic velocity vector, m/s
g temperature distribution function, K
k thermal conductivity, W/m K
L macroscopic length scale, m
Ma Mach number
n phase index
Nps total phase number
ðsh; rg; sc; zsÞ shape constraint indexes
t time, s
T temperature, K
w weighting factor
x; y; z coordinates
x1; y1; z1 coordinates after rotation
x coordinates in vector form

Greek symbols
DT temperature scale, K
Dt time scale, s
Dx;Dy;Dz lattice size in x; y; z direction, m
a thermal diffusivity, m2/s
h rotation angle
� shape overlap ratio
n a volume ratio geometry factor
g a surface ratio geometry factor

q density, kg/m3

s relaxation time, s
/ volume fraction
‘ mesoscopic length scale, m

Subscripts
eq equilibrium state
f fluid
high higher value
ði; j; kÞ index of coordinates
a index of discrete volcity directions
m mixture of solid and liquid
od opposite direction
‘ mesoscopic length scale
low lower value
L macroscopic length scale
ref reference
s solid
w wall
0 initial time value

Superscripts
n phase index
— space averaged value
� dimensionless variables
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