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a b s t r a c t

The generalized finite difference method (GFDM) is a relatively new domain-type meshless method for
the numerical solution of certain boundary value problems. This paper documents the first attempt to
apply the method for recovering the heat source in steady-state heat conduction problems. In order to
guarantee the uniqueness of the solution, the heat source here is assumed to satisfy a second-order par-
tial differential equation, and thereby transforming the problem into a fourth-order partial differential
equation, which can be solved conveniently and stably by using the GFDM. Numerical analysis are pre-
sented on three benchmark test problems with both smooth and piecewise smooth geometries. The sta-
bility and sensitivity of the scheme with respect to the amount of noise added into the input data are
analyzed. The numerical results obtained show that the proposed algorithm is accurate, computationally
efficient and numerically stable for the numerical solution of inverse heat source problems.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The finite element (FEM) and finite difference (FDM) methods
have long been dominant numerical techniques in the simulation
of real-world engineering applications. These methods, however,
require the task of meshing the whole domain, which can be ardu-
ous, time-consuming and computationally expensive for certain
classes of problems [1–3]. During the past two decades, some con-
siderable effort was devoted to proposing novel computational
algorithms that circumvent or greatly eliminate the problems asso-
ciated with boundary or domain meshing. This led to the develop-
ment of meshless or meshfree methods, which require neither
domain nor boundary meshing. Generally, these methods can be
divided into the domain-type [4,5] or boundary-type [6–12] tech-
niques, depending on whether their basis functions satisfy the gov-
erning equation of interest. For an overview of the state of the art,
we refer the reader to Refs. [7,13–17], as well as the references
therein.

The generalized finite difference method (GFDM) belongs to the
family of domain-type meshless methods and now has been suc-
cessfully tried for many kind of engineering problems. In the

GFDM, by utilizing the Taylor series expansions and weighted
least-squares method, the derivatives of unknown variables can
be expressed as linear combinations of function values of neigh-
boring nodes. In addition, the concept of the star used in the GFDM
yield a sparse matrix system, which makes the method very easy to
implement by using standard sparse-matrix solvers. The basis of
the method was published in the early eighties by Liszka and Ork-
isz [18,19] and were latter essentially improved and extended by
many other authors. Now the most advanced version was given
by Benito et al. in 2001 [20], including the point generation, local
approximation and automatic selection of stars. In 2003, Gavete
et al. [21] analyzed the influences of several factors on the accuracy
of the GFDM, such as the shapes of the star, the number of nodes
used in the star and different choices of the weighting functions.
Their researches can be viewed as a good guidance for using the
GFDM. In 2003, Benito et al. [22] proposed an h-adaptive algorithm
to avoids incorrect stars and improve the accuracy of the method.
In a more recent study, Ureña et al. [23] extended the GFDM to
solve the third- and fourth-order partial differential equations. In
recent years a few different meshless techniques have been pro-
posed and developed which are different but also highly related
to the GFDM method, such as the diffuse approximation method
(DAM) proposed by Sadat et al. Interested readers are referred to
Refs. [24–26] for details of the original and new versions of the
DAM algorithms.
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Inverse source problems arise in many branches of science and
engineering [27,28], such as heat conduction, crack identification,
electromagnetic theory, geophysical prospecting and pollutant
detection. In inverse heat source problems, the interior heat source
describing the direct problem is missing, due to technical difficul-
ties associated with data acquisition. To fully determine the pro-
cess, additional data must be supplied, either other boundary
conditions on the same accessible part of boundary or measure-
ments at some internal points in the domain. A formal mathemat-
ical model of an inverse problem can be derived with relative ease.
However, the process of solving such problems is extremely diffi-
cult due to the fact that they are ill-posed in the sense that small
errors in measured data may lead arbitrarily large changes in the
numerical solution. The recovery of a general heat source presents
difficulty and only a limited number of papers devoted to this sub-
ject are available in the literature [29].

In the present paper, we investigate a numerical scheme based
on the GFDM for solving the inverse heat source problem associ-
ated with the steady-state heat conduction. It should be noted that
the GFDM has recently been applied to inverse problems with
great success, such as inverse biharmonic boundary value prob-
lems [30] and Cauchy problem for various partial differential equa-
tions [31]. To our knowledge, this is the first time the GFDM is
applied for solving inverse heat source problems. It is worthwhile
to mention that the interior heat source, in generally, cannot be
determined uniquely by the boundary measurements [29]. The
inverse source problem becomes solvable if some a priori knowl-
edge is assumed. For instance, if the base area of a cylindrical
source is known, the sought source is a characteristic function or
a point source, then the unknown interior source can be uniquely
determined by the boundary data. In the present study, the source
is assumed to satisfy a second-order partial differential equation,
and thereby transforming the problem into a fourth-order partial
differential equation which can be conveniently solved using the
GFDM.

A brief outline of the rest of this paper is as follows. Section 2
introduces the mathematical formulation of inverse heat source
problems. The GFDM formulation and its numerical implementa-
tion for general fourth-order partial differential equations are pre-
sented in Section 3. Next, numerical analysis are presented in
Section 4 on three benchmark test problems with both smooth
and piecewise smooth geometries. Finally, some conclusions and
remarks are provided in Section 5.

2. Mathematical formulation for inverse heat source problems

Let X be an open bounded domain and assume that X is
bounded by a surface C which may consist of several segments,
each being sufficiently smooth in the sense of Liapunov. The
steady-state heat conduction in an isotropic medium is described
by the following Poisson equation, namely

r2uðx; yÞ ¼ f ðx; yÞ; ðx; yÞ 2 X; ð1Þ
where uðx; yÞ is the potential field and f ðx; yÞ is the heat source term.
The heat flux qðx; yÞ through the boundary C is given by

qðx; yÞ ¼ @uðx; yÞ
@n

¼ �qðx; yÞ; ðx; yÞ 2 C; ð2Þ

where n presents the outward unit vector normal to the boundary
C, and the barred quantities indicate the given values on the
boundary.

Assume that the heat source term f ðx; yÞ is unknown and both
the temperature and heat flux can be measured on an accessible
part of the boundary C1 2 C, i.e.,

uðx; yÞ ¼ �uðx; yÞ; qðx; yÞ ¼ �qðx; yÞ; ðx; yÞ 2 C1: ð3Þ

It should be noted that the inverse problem of recovering a heat
source, in generally, does not admit a unique solution [29]. A
minimum-norm solution to this problem is usually that of practical
interest according to the so-called ‘principle of parsimony’, which
states that, from the multitude of solutions to the inverse problem,
the one that reveals the least amount of details or information
should be selected. This has been previously exploited by Farcas
et al. [32] to explain their results obtained using the Tikhonov reg-
ularization method. It turns out that the minimum-norm solution
should satisfy the Laplace equation [33]. In order to illustrate the
facility of the proposed scheme for incorporating different a priori
assumptions, we consider the following two formulations of the
problem:

Formulation 1. The heat source is harmonic in X, i.e. the source

satisfies the homogeneous Laplace equation r2f ðx; yÞ ¼ 0. Apply-

ing the operator r2 to both side of Eq. (1) gives

r4u ¼ @4u
@x4

þ 2
@4u

@x2@y2
þ @4u

@y4
¼ 0; ðx; yÞ 2 X; ð4Þ

uðx; yÞ ¼ �uðx; yÞ; ðx; yÞ 2 C1; ð5Þ

qðx; yÞ ¼ �qðx; yÞ; ðx; yÞ 2 C1: ð6Þ

Formulation 2. The heat source satisfies the homogeneous mod-

ified Helmholtz equation ðr2 � k2Þf ðx; yÞ ¼ 0, with the wave

number k is known. Applying the operator ðr2 � k2Þ to both sides
of Eq. (1) gives

ðr2 � k2Þr2u ¼ @4u
@x4

þ 2
@4u

@x2@y2
þ @4u

@y4
� k2

@2u
@x2

� k2
@2u
@y2

¼ 0; ðx; yÞ 2 X; ð7Þ

uðx; yÞ ¼ �uðx; yÞ; ðx; yÞ 2 C1; ð8Þ

qðx; yÞ ¼ �qðx; yÞ; ðx; yÞ 2 C1: ð9Þ
Although other formulations of the problem may be possible, in

this study we investigate only the aforementioned two cases of the
inverse heat source problem. Other formulations of the problems
can be solved in a similar way. The problem is now transformed
to the calculation of a fourth-order partial differential equation
which can be solved conveniently and stably by using the GFDM,
which will be presented in the following section.

3. Numerical algorithms

3.1. GFDM for fourth-order partial differential equations

Without loss of generality, let us consider a problem governed
by the following forth-order partial differential equation

a1
@u
@x

þ a2
@u
@y

þ a3
@2u
@x2

þ a4
@2u
@y2

þ a5
@2u
@x@y

þ a6
@3u
@x3

þ a7
@3u
@y3

þ a8
@3u

@x2@y
þ a9

@3u
@x@y2

þ a10
@4u
@x4

þ a11
@4u
@y4

þ a12
@4u

@x3@y

þ a13
@4u

@x2@y2
þ a14

@4u
@x@y3

¼ gðx; yÞ: ð10Þ

In the GFDM, by utilizing the Taylor series expansions and
weighted least-squares method, the derivatives of unknown vari-
ables can be expressed as linear combinations of function values
at its neighboring nodes. First of all, an irregular cloud of points
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