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a b s t r a c t

We present an approach for simulation of topography related artefacts in local thermal conductivity mea-
surements using Scanning Thermal Microscopy (SThM). Due to variations of the local probe-sample
geometry while the SThM probe is scanning across the surface the probe-sample thermal resistance
changes significantly which leads to distortions in the measured data. This effect causes large uncertainty
in the local thermal conductivity measurements and belongs between most critical issues in the SThM
when we want to make the technique quantitative. For a known probe and sample geometry the topog-
raphy artefacts can be computed by solving the heat transfer in the SThM for different probe positions
across the surface, which is however very slow and limited to single profiles only, if we use standard tools
(like commercially available Finite Element Method solvers). Our approach is based on an assumption of
diffusive heat transfer between the probe and the sample surface (and within them) and on the use of a
Finite Difference solver that is optimized for the needs of a simulated SThM images computing. Using a
graphics card we can achieve computation speed that is sufficient for a virtual SThM image generation on
the order of few hours, which is already sufficient for practical use. We can therefore use the measured
sample topography and convert it to a virtual SThM image – which can be then e.g. compared to real mea-
surement or used for artefacts compensation. The possibility of performing fast simulations of topogra-
phy artefacts is also useful when uncertainties of the SThM measurements are evaluated.
� 2017 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Scanning Thermal Microscopy (SThM) is a special Scanning
Probe Microscopy (SPM) technique dedicated to measurements
of local temperature and heat transfer phenomena [1–3]. Such
measurements are important namely in the field of microelectron-
ics and in various nanotechnology fields where local power dissi-
pation and heat generation plays some role. It offers far the best
spatial resolution out of all the thermal techniques, however
despite its long development, the uncertainty of the measured
temperature or thermal conductivity is still very large on most of
the devices, if the method is made traceable at all (which is typi-
cally not the case).

In most of the commercially available scanning thermal micro-
scopes a local resistive heater and/or temperature sensor, either in
a form of a microfabricated probe or a very thin wire bent to form a

probe is used [4–6]. This probe is scanned across the surface in a
standard contact mode (monitoring the repulsive forces via optical
lever technique), therefore microscope provides at least two chan-
nels of simultaneously provided information – topography one and
temperature related one. The inevitable presence of some surface
structures and irregularities on the measured sample is also one
of the big problems of the uncertainty evaluation as these lead to
artefacts in all the thermal channels [7,8]. In case of local temper-
ature measurements these can be prevented using null point tech-
nique in some of its variants [9] – evaluating the apparent
temperature for zero flux between the probe and the sample. In
case of measurement of local thermal conductivity the results are
based on the non-zero heat flux, thus such approach cannot be
done.

Topography artefacts in SThM are related to changes of the flux
while there is a variance of the contact area of the probe depending
on local sample geometry or while there is a variance of sample
volume where heat can flow into different parts of the sample. If
the probe is located e.g. on the edge of a flat sample surface, we
can expect that the heat flow between the probe and the sample
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will be approximately twice lower compared to the situation when
the probe is at the center of the sample. At the edge we have twice
smaller probe-sample contact area and less material in probe
vicinity where heat could flow to. On real samples the probe-
sample area is varying rapidly both due to microscale objects that
may accidentaly lay on surface and random roughness that is pre-
sent nearly everywhere.

One possible way of treating the topography artefacts is to
model them and to correct the measured data afterwards, or at
least detect which parts of the data are influenced by the artefacts
and which may contain other relevant information. The biggest
problem in such simulations is that we need to perform pixel-by-
pixel simulation of the probe-sample response, forming a virtual
SThM image. The number of individual calculations of the probe-
sample interaction is given by number of pixels of the final image,
which usually means hundreds of thousands at least. For such
number of individual calculations, most of the modeling tools are
too slow.

In previous articles [7,10] we have implemented and compared
various methods for calculation of a virtual SThM image that could
be used for estimation or removal of the topography artefacts.
Some of the methods tested were correct (at least under assump-
tion of diffusive heat transfer), but slow, e.g. Finite Element
Method. Some produced apparently nice results, but only qualita-
tively, being rather fast, e.g. Neural Network. Due to this tradeoff
between physical correctness and speed we have used the simpler
techniques like Neural networks so far, which are however limited
to some class of surfaces and need very careful measurement and
neural network training. Moreover, all the physical content is hid-
den in training of the neurons and the result is therefore not exact
solution of some physical equation.

The next logical step is to make physically correct solution of
the tip-sample heat transfer fast enough for practical purposes.
We have developed a methodology and associated numerical tool
that is focused on fast calculations of virtual SThM images. In con-
trast to general packages (e.g. any commercial FEM) it is almost
single purpose software. This allowed us to optimize the calcula-
tion speed much further than what would be possible with an uni-
versal software. We have started with a very simple numerical
approach based on Finite Difference Method (FDM) with regular
equally spaced three dimensional mesh and we have optimized
this for fast calculations of steady state heat transfer in slightly
changing tip-sample configurations as the tip is scanning across
the sample surface.

It should be noted that the presented approach is still not cov-
ering all the physical phenomena that would need to be taken into
account for heat transfer in all the scales observed in SThM exper-
iments. On the small scale, the heat flux through the air gap
between the probe side and the sample surface is ballistic and
should be modeled using another approach [11]. Also in the probe
and in the sample itself, the heat flux is not necessarily diffusive
(depending on material and its dimensions compared to mean free
path of phonons). There is some meniscus formed by capillary con-
densation in the gap between the probe and the sample and some
of the heat is transferred through the water layer [12,13]. On the
other hand we believe that for larger probes, at presence of differ-
ent surface contaminations, adsorbed water layer, etc., the heat
flux is so complex that assumption of the simple diffusive heat
transfer is still a good approximation for topography artefacts com-
pensation. Moreover, some of the promising models for taking the
ballistic heat transfer into the account, e.g. based on some flux lines
evaluation would also benefit of the computed Poisson equation
solution, so the developed model can be also used as a first step
for building more complex and more physically correct model for
these small scale calculations.

2. Numerical model

2.1. Finite difference method

Poisson’s equation is one of important tools for calculating tem-
perature fields. It is a parabolic differential equation in the form

DT ¼ f

where T denotes temperature, and f is a function defined on the
manifold. The Poisson’s equation has many applications not only
in heat study, but also in other fields of physics, typically electro-
statics, diffusion and others. Nevertheless, in our context, tempera-
ture field T is the unknown function which is to be calculated.

The most common method for solving the equation is based on
discretization (tesselation) of the domain of interest into finite
number of elements. It is important to study mutual interactions
between the neighbouring elements.

At first, we will consider a special case of Poisson’s equation,
where there is zero on the right hand side:

DT ¼ 0

In this situation the temperature field is determined solely by
boundary conditions. It can be viewed as a special case of heat
equation

@T
@t

� aDT ¼ 0

when steady temperature field is required. At this assumption, any
closed volume (i.e. volume element) must fulfill the condition of
zero net heat energy exchange with its surrounding. The incoming
heat flow must be equal to outcoming heat flow for each of the ele-
ments in the discretized volume. From this principle we can deduce
a steady state for a rectangular grid.

The heat flows between a given element and all its neighbors,
while each element has two neighbors in the direction of principal
axis (x; y; z). We will describe the situation for two dimensional
case (see Fig. 1), where each element has four neighbors.

The heat flow q, which is an important property in the calcula-
tion, is equal to the gradient of temperature multiplied by thermal
conductivity k. This equation is known as the Fourier’s law:

q ¼ �krT

Fig. 1. A five-node stencil representing a node with temperature Tij surrounded by
four neighbouring nodes. The heat flows through areas of thermal conductivities
k1; . . . ; k4.
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