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a b s t r a c t

In a thermal tomography measurement setup, a physical body is sequentially heated at different source
locations and temperature evolutions are measured at several measurement locations on the surface of
the body. Based on these transient measurements, the thermal conductivity, the volumetric heat capacity
and the surface heat transfer coefficient of the body are estimated as spatially distributed parameters,
typically by minimizing a modified data misfit functional between the measured data and the data com-
puted with the estimated thermal parameters. In thermal tomography, heat transfer is modeled with the
time-dependent heat diffusion equation for which direct time domain solving is computationally expen-
sive. In this paper, the computations of thermal tomography are sped up by utilizing a truncated Fourier
series approximation approach. In this approach, a frequency domain equivalent of the time domain heat
diffusion equation is solved at multiple frequencies and the solutions are used to obtain a truncated
Fourier series approximation for the solution and the Jacobian of the time domain heat transfer problem.
The feasibility of the approximation is tested with simulated and experimental measurement data. When
compared to a previously used time domain approach, it is shown to lead to a significant reduction of
computation time in image reconstruction with no significant loss of reconstruction accuracy.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Thermal tomography is an emerging non-destructive imaging
technique which aims at recovery of three-dimensional images of
the thermal conductivity and heat capacity of a physical body from
non-invasive temperature measurements made on the surface of
the body [1–11]. In the measurement process, the body is heated
at a source location and temperature evolutions are measured at
multiple measurement locations on the surface. The same process
is then repeated for a number of source locations. Finally the mea-
sured temperature evolutions are used to estimate the unknown
thermal conductivity and heat capacity as spatially distributed
parameters which can be visualized as three-dimensional images.
Potential applications of thermal tomography include characteri-
zation of thermal properties and non-destructive testing, such as
detecting and locating air bubbles, cracks, porosity and other
defects that alter thermal properties of materials.

The heatings and the temperature measurements can be chosen
to be contact or non-contact based depending on the application.
When physical contact with the body is practical, it is possible to
use contact heaters, such as heating resistors, and contact temper-
ature sensors, such as thermocouples or thermistors. Alternatively,
if no contact is desired, inductive or laser heatings as well as ther-
mography (IR-camera) measurements can be used.

Solving the thermal conductivity and the heat capacity of the
body as spatially distributed parameters given the boundary mea-
surements of heat transfer is a non-linear and ill-posed inverse
boundary value problem which is unstable with respect to mea-
surement and modeling errors. In this paper, this inverse problem
is considered in the framework of Bayesian inversion [12,13].

Thermal tomography has been studied with simulations in [1–
10]. The spatially distributed thermal conductivity of a two-
dimensional (2D) body was estimated using simulated steady state
measurements in [1] and that of three-dimensional (3D) bodies
with known heat capacities using simulated transient state mea-
surements in [2,3]. The estimation of either the spatially dis-
tributed thermal conductivity or the spatially distributed heat
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capacity of a 2D body while the other parameter was assumed
known was studied in [4]. In [5], defects in 2D bodies were located
using discrete variable thermal tomography, an approach where
each pixel of the resulting image is allowed one of two possible
sets of thermal properties, that is, the a priori known values of
the intact or the defect area. Furthermore, 2D spatially distributed
and time dependent thermal conductivity was estimated in [6]
while the heat capacity was assumed known. The thermal conduc-
tivity and the shape of an inclusion were estimated in [7] using
simulated steady state measurements with the thermal properties
of the body otherwise known. More complexity was added in [8,9]
when both the thermal conductivity and the heat capacity of 2D
bodies were treated as unknowns and were estimated from tran-
sient boundary measurements.

In [9], it was demonstrated using simulated data from a 2D
body that simultaneous estimation of spatially distributed thermal
conductivity and volumetric heat capacity from transient bound-
ary data is feasible when the boundary heat flux between the body
and the surrounding medium is known. However, in practice such
a measurement setup would not always be feasible as it requires
the body to be insulated from the surrounding medium. In [10],
the computational methods of [9] were extended towards a more
practical setup of imaging bodies where the boundary heat flux
between the body and the surrounding medium is not known
(i.e. the body is not insulated). This was implemented by treating
the surface heat transfer coefficient as a spatially distributed
parameter at the surface, and estimating it simultaneously with
the spatially distributed thermal conductivity and volumetric heat
capacity.

In [11], the feasibility of thermal tomography was tested using
experimental measurement data with computational methods
modified from those of [10]. The data was measured from a mortar
body using a prototype thermal tomography measurement device
which uses heater resistors for heating and thermistors for temper-
ature measurements at the surface of the body. The shape and
location of an air cavity were clearly visible in the estimates of
thermal conductivity and heat capacity, implying that thermal
tomography with experimental measurement data is feasible.

We note that infrared thermography techniques [14–23] are
somewhat related to thermal tomography, the main difference
being that infrared thermography techniques are designed to
detect defects that are located relatively close to the surface of
the body, whereas thermal tomography aims at locating defects
within the whole volume of the body and at giving quantitative
solutions of the thermal conductivity and the heat capacity as well.

The forward model of thermal tomography which is used to
model the time evolution of temperature inside the body is the
time-dependent heat diffusion equation. In [11], the computational
approach to solve the semi-discrete finite element approximation
of this model and the related Jacobians was based on an implicit
Euler scheme which makes estimating the thermal parameters
time consuming. In this paper, we propose a truncated Fourier ser-
ies approximation approach to reduce the computational cost of
thermal tomography. In the proposed approach, the time-domain
forward solution and Jacobians are approximated by a truncated
Fourier series which is based on a small number of solutions of
the frequency domain heat diffusion equation. The feasibility of
the approach is evaluated with simulated and experimental mea-
surement data by comparing the forward model solutions and
the estimates of the thermal parameters to those obtained with
the time domain approach of [11]. Previously, a similar Fourier ser-
ies approximation for the solution of a time-dependent partial dif-
ferential equation has been utilized for the solution of the time
domain radiative transfer equation in [24]. In [25], a parallelized
Fourier series truncated diffusion approximation was used to
accelerate diffuse fluorescence tomography.

The rest of the paper is organized as follows. The modeling of
heat transfer is discussed in Section 2 and the numerical imple-
mentation of the heat transfer modeling in Section 3. The estima-
tion of the thermal parameters is discussed in Section 4. The
measurement setup and parameter choices are discussed in Sec-
tion 5 and the results using simulated and experimental measure-
ment data are given and discussed in Section 6. Section 7 gives the
conclusions.

2. Modeling of heat transfer

2.1. Time domain heat transfer

Let X � R3 model the domain of the target, i.e. the domain of
the body under investigation, with boundary @X, let Nk � @X
(k ¼ 1; . . . ;NN) be the surface patches that are covered by the hea-
ter elements and nj 2 @X (j ¼ 1; . . . ;Nn) denote the locations of the
point-like temperature sensors. In the measurement process, one
of the heaters is turned on at a time for a time period theat and it
produces a heat flux into the target at Nk. This is followed by a cool-
ing period of tcool seconds before the next heater is turned on.
While this is repeated for all heaters, the evolution of temperature
is measured every Dtm at all of the measurement locations for the
duration of the measurement process tmeas ¼ NNðtheat þ tcoolÞ.

Heat transfer is modeled with the heat diffusion equation and
the boundary conditions

cðxÞ @Tðx; tÞ
@t

¼ r � ðjðxÞrTðx; tÞÞ; x 2 X ð1Þ

jðxÞ @Tðx; tÞ
@n̂

¼ qðx; tÞ; x 2 @X ð2Þ
Tðx; 0Þ ¼ T0 ð3Þ
where cðxÞ is the volumetric heat capacity, jðxÞ is the thermal con-
ductivity, Tðx; tÞ is the temperature, qðx; tÞ is the heat flux, x is the
position vector in X; t is time, n̂ is the outward pointing unit normal
of @X and T0 is the initial temperature of the target [26].

The boundary condition modeling the heat flux at the surface of
the target can be split into heat flux between the heaters and the
target, and heat flux between the target and the surrounding med-
ium. Thus

qðx; tÞ ¼ b TH;kðtÞ � Tðx; tÞ� �
; x 2 Nk

hðxÞ T1ðtÞ � Tðx; tÞð Þ; x 2 @XS

(
ð4Þ

where b ¼ jb=Lb is the thermal contact conductance coefficient
where jb and Lb are the thermal conductivity and the thickness of
the contact layer between the heater and the target, TH;kðtÞ is the
temperature of the heater at the surface patch Nk; hðxÞ is the surface
heat transfer coefficient, T1ðtÞ is the temperature of the surround-
ing medium and @XS ¼ @X n Nk¼1;...;NN is the part of the boundary
that is not covered by heater elements [11].

2.2. Truncated Fourier series approximation

By using the notation sðx; tÞ ¼ Tðx; tÞ � T0 and the Fourier
transformation, the parabolic heat transfer problem (1)–(3) can
be transformed into the elliptic frequency domain heat transfer
problem

_ixjcðxÞsðx; xjÞ ¼ r � ðjðxÞrsðx; xjÞÞ; x 2 X ð5Þ
with the boundary condition

jðxÞ @sðx; xjÞ
@n̂

¼ b sH;kðxjÞ � sðx; xjÞ
� �

; x 2 Nk

hðxÞ s1ðxjÞ � sðx; xjÞ
� �

; x 2 @XS

(
ð6Þ
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