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a b s t r a c t

An analytical discrete-variable model has been developed to describe heat conduction in nano-sized sys-
tems. The model assumes that the system consists of a homogeneous array of cells with characteristic
size h; each cell interacts with the nearest neighbors in discrete time step s and all the cells compute their
new state simultaneously. In the continuum limit h ! 0 and s! 0, the model reduces to classical heat
diffusion equation of parabolic type or heat conduction equation of hyperbolic type, depending on the
choice of scaling invariant. The model is applied to heat conduction in nano-films with emphasis on
the transition from the diffusive to ballistic heat transport, which occurs with decreasing film thickness.
This model provides a simple method for predicting in a self consistent manner the effective cross-plane
thermal conductivities, the temperature jump at the boundaries, the heat flux across the film, and the
temperature gradient within the film as functions of the film thickness. The results are in good agreement
with molecular dynamic and Monte Carlo simulations.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The classical heat conduction theory, which is based on the local
equilibrium assumption, leads to the linear relation q ¼ �krT
between the heat flux q and the temperature gradient rT , where
k is the bulk thermal conductivity [1]. This relation known as Four-
ier law suggests that the heat flux q(x, t) at a space point x and at a
time moment t depends on the temperature gradient at the same
space-time point, i.e. rTðx; tÞ: In other words, Fourier law is local
both in time and space. Strictly speaking heat transport is an inher-
ently nonlocal phenomenon [1–12]. The heat flux at a point
depends on the history of the heat carriers reaching the point at
time t and the carriers arrive at the point in space having brought
the energy from other points. Thus, there are essentially two
important non-Fourier effects: (i) the one is related to the time
lag between the heat flux and the corresponding temperature gra-
dient - it can be called as a time non-local effect, which describes
relaxation to local equilibrium, (ii) the other is a space non-local
effect, which takes into account that the carriers come to a point
from another distant point. Several theoretical methods have been
proposed to study the local nonequilibrium effects [1–20]. Primar-
ily, more attention has been paid to study the time-nonlocal (or
relaxation) effects (see [1–6] and references therein), which, in
particular, have been observed in metals under ultra-short laser

irradiation [8] or during ultrafast phase transformations
[6,17,18,20]. Recently, the trend towards miniaturization of elec-
tronic devices has increased the interest in space nonlocal effects
during nano-scale heat conduction [1,2,7–47]. One of the most
important characteristics of nano-scale heat conduction is that
the thermal conductivity of nanostructures such as thin films,
superlattices, nanowires and nanotubes is reduced significantly
from that of the corresponding bulk materials depending on the
sizes of nanostructures [1,2,9,11,13–16,19–43]. This effect has
been observed, for example, in silicon and germanium films [14,2
3–25,27,29,31,32,36,38,41], two-dimensional black phosphorus
[43], polycrystalline aluminum nitride [35], graphene and ultrathin
graphite [22,28,40,42]. Molecular dynamic (MD) [24–26] and
Monte Carlo (MC) [27] or simulations also demonstrate that the
effective thermal conductivity of nano-systems is significantly
lower than the bulk value and decreases with the system size.
The size-dependent thermal conductivity implies the breakdown
of the Fourier law in nanoscale heat transfer where the mean-
free-path (MFP) of phonons h is comparable or even much larger
than the material length scale L. As a consequence, the heat trans-
port is no longer diffusive (i.e. dominated by collisions amongst the
particles of the system) but becomes ballistic (i.e. dominated by
collisions with the walls). The size-dependent thermal conductiv-
ity has been considered on the bases of Boltzmann’s equation
[9,11], EIT [1,14–16], phonon hydrodynamic equation [29], Lan-
dauer approach [23]. Usually, the non-Fourier heat conduction
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effects are considered by expanding in Taylor’s series distribution
function or corresponding thermodynamic functions in powers of
small parameter Kn ¼ h=L � 1 (the Knudsen number) around local
equilibrium state. In such a case the non-local corrections are of
the order of h/L, which implies that the transition from the
nearly-Fourier heat conduction h/L� 1 to the non-local (ballistic)
heat conduction h/L � 1 described on the basis of the expansion
around local equilibrium state needs careful justification.

An alternative approach, which consider the problem of non-
local heat conduction under a completely different angle, is based
on the discrete variables (DV) formalism [6–8,12,17]. The DV
model is an algorithm that describes discrete spatial and temporal
evolution of complex dynamic systems, which consists of nano-
sized elemental cells, by applying local interaction rules to the cells
on a regular (or non-regular) lattice.

In this paper we use the DV model to study steady-state heat
conduction in nano-films with emphasis on the transition from
the diffusive to ballistic heat transport, which occurs with decreas-
ing film thickness. In fact, the size-dependent thermal conductivity
obtained earlier by more elaborated and computationally expen-
sive methods is repeated in the results section as a validation for
the DV formulation in the present work. In addition to the size-
dependent thermal conductivity, the DV model allows us to calcu-
late in a self-consistent manner the heat flux across the film, the
temperature jumps at the boundaries between the film and the
thermal reservoirs, and the internal temperature gradient within
the film as functions of the film thickness.

2. Discrete heat conduction model

2.1. General formulation

The idea to describe the non-local heat conduction with space-
time discrete variables is closely related to the concept of random
walks on a lattice and cellular automata (see [6–8] and references
therein). The discrete approach assumes that space and time are
discrete variables and a media can be divided into cells of a char-
acteristic length h and states of cells evolve simultaneously in dis-
crete intervals of time s. The characteristic length h is the
minimum size of the cell, to which the local temperature T(x, t)
can still be assigned. The idea of the minimum space and time
scales employed by the discrete model to describe far from local
equilibrium processes [6–8,12,17] corresponds to the conclusion
of Majumdar [9] that ‘‘since temperature at a point can be defined
only under local thermodynamic equilibrium, a meaningful tem-
perature can be defined only at points separated on an average
by the phonon mean free path”. The idea is also consistent with
the concept of minimum heat-affected region suggested by Chen
[11], which assumes that during phonon transport from a nanos-
cale heat source the minimum size of the heat affected region is
of the order of the phonon mean free path [11,34]. Thus, in solids
h is of the order of the phonon mean free path (MFP). For a sake
of simplicity it is assumed here that MFP is frequency-
independent, however, the proposed approach allows us to gener-
alize the model for frequency-dependent MFP.

In a one-dimensional description (1D), the discrete approach
gives a heat conduction equation as follows [6–8,12,17]

Tðt þ s; xÞ ¼ 1
2

Tðt; xþ hÞ þ Tðt; x� hÞ½ � þ Qðt þ s=2; xÞ=C ð1Þ

where Q is the heat source, C is the heat capacity, T is the kinetic
temperature [13], which is usually used for nonequilibrium situa-
tions, although the most suitable definition of the nonequilibrium
temperature is still an open problem [1,15]. Eq. (1) assumes that
the temperature Tðt; xÞ is assigned to a discrete cell

ðx� h=2; xþ h=2Þ, which center has a coordinate x. Within the cell,
i.e. on the space interval ðx� h=2; xþ h=2Þ, the temperature does
not change with x. Tðt; xþ hÞ and Tðt; x� hÞ are the temperatures
of the neighboring cells.

The discrete formalism implies that the energy exchange
between the cells occurs on the border between the neighboring
cells, which allows us to present the heat flux q as follows [6,10,12]

qðt þ s=2; xÞ ¼ Cv
2

Tðt; x� h=2Þ � Tðt; xþ h=2Þ½ � ð2Þ

where v ¼ h=s is the heat-carrier (phonon) velocity, which assumed
to be frequency-independent. Strictly speaking, this assumption is
valid in the Debye approximation, while in a general case there
are dispersive effects that make v itself depends on the phonon fre-
quency. Note that in Eq. (2) x is a coordinate of the border between
the neighboring cells with coordinates x� h=2 and xþ h=2, respec-
tively (see Fig. 1), i.e. there is a coordinate shift x ! xþ h=2 in com-
parison with Eq. (1). This reflects the non-local property of heat
conduction under far from equilibrium conditions that there is
not only the time but also the space lag between the heat flux
and the temperature. The Taylor expansions of Eqs. (1) and (2)
allows one to rewrite them in an operator form as follows [12,17]

expðs@tÞ � coshðh@xÞ½ �T ¼ expðs=2Þ@t½ �Q=C ð3Þ

exp
s
2
@t

� �
q ¼ �Cv

2
sinh

h
2
@x

� �
T ð4Þ

Eqs. (1) and (2) can be used for computer simulation directly in
the discrete form [7]. Now we turn to the question of the transition
from the discrete Eqs. (1) and (2) to usual continuum description in
the form of partial differential equations. Taylor expansions of Eqs.
(3) and (4) in the continuum limit h? 0 and s! 0 contain an infi-
nite number of terms with two small parameters h and s. To obtain
equations with a finite number of terms one should first specify an
invariant of the continuum limit, which conserves a desirable
property of the discrete model [6–8,12,17].

2.2. Diffusive continuum limit h2
=2s ¼ const > 0

When h2
=2s > 0 at h? 0 and s! 0, Eq. (3) gives the classical

heat conduction equation of parabolic type

@T
@t

¼ k
C
@2T
@x2

þ Q
C

where k ¼ Ch2
=2s ¼ Chv=2 is the bulk thermal conductivity. In 2D

and 3D, the discrete model gives k ¼ Chv=4 and k ¼ Chv=6, respec-
tively. Note that the discrete model assumes that the heat carriers,
which cross a plane x and contribute to the heat flux q(x), come
from distance ðxþ hÞ and ðx� hÞ with average temperatures
Tðxþ h=2Þ and Tðx� h=2Þ, respectively. Kinetic theory usually
assumes that the heat carriers have temperatures Tðxþ hÞ and
Tðx� hÞ, respectively, which in 3D gives k ¼ Chv=3. Thus, the result
of the present model k ¼ Chv=6 takes into account that the temper-
ature T(x) may change on the intervals ðx; x� hÞ and ðx; xþ hÞ,
which seems to give a more adequate value for the bulk thermal
conductivity k.

The requirement that the heat diffusivity h2
=2s has a finite

value at h? 0 and s! 0 implies that v ! 1. Indeed, representing
v as v ¼ k=Ch we obtain that v ! 1 at h ! 0. This is the so-called
‘paradox’ of propagation of thermal signals with infinite speed,
which corresponds to the usual parabolic description [1]. This
implies that the diffusive continuum limit is appropriate for pro-
cesses with a relatively low characteristic velocity V� v [6,20].
Corresponding continuum limit of the discrete equation for the
heat flux q, Eq. (4), gives the classical Fourier law q ¼ �krT.
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