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a b s t r a c t

A modular dynamic subgrid-scale modeling framework is presented for large eddy simulation of two-
dimensional Boussinesq turbulence. The procedure we put forth in this study allows us to couple the
structural subgrid-scale parameterization models with the functional models by minimizing the error
between them. In particular, the approximate deconvolution procedure is used to estimate the
Smagorinsky and Baldwin-Lomax eddy viscosity constants and the associated turbulent Prandtl numbers
self-adaptively from the resolved flow quantities. Our numerical assessments for solving the Rayleigh-
Bénard turbulent thermal convection problem show that the proposed approach could be used as a viable
tool to address the turbulence closure problem for the Boussinesq setting due to its accuracy and
flexibility.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Turbulence is a flow phenomenon characterized by chaotic
motions represented by large variations in the velocity field in
the domain of interest combined with high momentum transfer
through advection. Convective motion is generated by spatial vari-
ations in an advected scalar field (in our case temperature) which
in turn transports the scalar itself. As such, this physical process is
of exceeding importance in a large number of fields ranging from
engineering applications to geophysical and astrophysical flows.
A classical problem in non-isothermal flow is the Rayleigh-
Bénard convection problem pertaining to a buoyancy driven flow
in a fluid layer heated from below which has been extensively used
to understand the transport properties of convective flows and
considerable research is as yet underway both from a theoretical
as well as a computational and experimental point of view [1–3].
Investigations related to scaling laws are important for determin-
ing convection dominated heat transfer physics, particularly for
emerging nanofluidic applications. The reader may refer to the
works in [4–13] where a wide variety of numerical methods for
different governing equations are implemented.

It is thus natural that a considerable amount of attention is
given to the computational study of the Rayleigh-Bénard problem
due to the potential implications of an improved understanding of
its convective behavior. Modeling the behavior of the tempera-
ture gradient driven flow (particularly at higher values of the

controlling parameter, the Rayleigh number) requires a difficult
decision with respect to the choice for a solution methodology. A
natural choice for high fidelity simulation data would be through
direct numerical simulation (DNS) of the Navier-Stokes (NS) equa-
tions. However it is seen that the scale separation inherent in tur-
bulent flows makes the use of DNS prohibitively expensive for
most problems of practical interest since that would require the
capture of all the scales in the flow from the integral to the Kol-
mogorov length scales. To compensate for these immense compu-
tational and memory overhead requirements for DNS, researchers
turn to turbulence models which aim to capture the behavior of
the larger scales in the fluid through modeling the effect of the
smaller structures on them. Turbulence modeling efforts can be
categorized in two main directions: the Reynolds averaged NS
(RANS) based models where a turbulence model is applied for all
the relevant scales of the flow to determine the aggregate behavior
of the physics and large eddy simulation (LES) based approxima-
tions where only the smaller features of the flow are modeled
whereas the most energetic large scales are resolved. The RANS
approach does not resolve any scales of turbulence but only mod-
els the turbulence spectrum as it is based on the temporal averag-
ing of NS equation. However, LES models are able to resolve and
capture the influence of larger length-scales of turbulence while
modeling only the influence of smaller scales (unresolved subgrid
scale as determined by the computational mesh size). By removing
the high wavenumber content of the flow through a low-pass fil-
tering procedure, LES has been proven to be an accurate and com-
putationally feasible approach for calculations of complex
turbulent flows [14–17]. Once filtered, the governing equations
need to be closed due to their nonlinearity [18,19].
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LES closures have been used extensively over the last few dec-
ades in modeling advection dominated flows and several subgrid
modeling approaches have been developed for a wide variety of
flows [20–32]. The basic methodology for developing an LES gov-
erning equation is the application of a low-pass spatial filter to
the NS equations which removes the resolution requirement of
small-scale turbulence followed by the treatment of the closure
problem due to the presence of the nonlinear advective terms in
the governing equations. This leads to a significant reduction in
computational expense as much coarser meshes are now used.
The end aim of closure modeling is to obtain an accurate represen-
tation for energy and momentum transfer mechanisms for simu-
lated flows. The classical Kolmogorov cascade theory for fully
turbulent flow which defines a nonlinear interaction of energy cas-
cading from the larger eddies in the flow to the smallest scales
where the energy is dissipated by viscosity in the form of heat
[33]. However, a unified LES closure scheme is a challenging task
due to the different energy transfer characteristics (e.g., forward
enstrophy and inverse energy cascades in quasi two-dimensional
geophysical flows where stratification and rotation suppress verti-
cal motions in the thin layers of fluid).

Two major schools of thought can be discerned in the general
body of LES closure research with one adhering to the use of pre-
defined subgrid-scale (SGS) models to approximate the effect of
the subgrid scale structures after the use of an explicit filtering
procedure, and the other committed to total dissipation of subgrid
scale stresses through the use of an implicit filter incorporated in a
spatially biased numerical scheme. While arguments have been
made in the favor of the former due to its more physical approach
to the closure problem, the lower computational expense of the
latter has also made implicit LES (ILES) attractive for more practical
flows. Within the general body of SGS models with explicit filtering
methodologies lie two approaches to the closure problem called
the structural and functional approaches. An important observa-
tion here is that both functional and structural closure models
and their variants are considered explicit LES closures due to the
fact that the underlying equations are modified before discretiza-
tion. The simplest form of LES is just to increase the viscosity until
the viscous scales are resolved by underlying computational mesh.
This added viscosity is generally called the turbulent eddy viscosity
and becomes the foundation of the main stream turbulent closure
models. Eddy viscosity models are consistent with Kolmogorov’s
ideas about the energy spectrum of three-dimensional isotropic
turbulence where energy is injected into the flow at large scales
and is gradually transferred by nonlinear cascading processes to
smaller and smaller scales until it is dissipated near the viscous

dissipation scale. Therefore the first and ultimately simplest
approach to parameterize these eddy interactions is to use func-
tional models.

The functional SGS closure modeling approach pertains to the
use of a user defined eddy viscosity or a heuristic for the calcula-
tion of eddy viscosity at different scales. One of the most celebrated
functional closures include the Smagorinsky model [20] and its
dynamic version [23,25] which have been applied successfully to
a large number of practical flows [16,17]. Both these versions
incorporate heuristics from the famous mixing length theory to
define an artificial dissipation in the velocity field as a function
of the local (or spatially averaged) gradients. The heuristic culmi-
nates with the user-defined choice of a parameter (known as the
Smagorinsky constant) which is fixed at a constant value in the
regular case and updated during the computation of the flow field
in the dynamic case. It must be mentioned here that although we
determine the LES equations using a low-pass filtering procedure, a
filter is not specified explicitly. The dynamic Smagorinsky model
has been used with relative success in many different fields in
comparison to the standard Smagorinsky model due to the obser-
vation of a wide spread of Smagorinsky constants in literature [34–
38]. This mixing length based heuristic for additional dissipation
may also be devised for use in two-dimensional turbulence
through the use of an artificial dissipation determined from the
local vorticity field also known as the Baldwin-Lomax model. The
Baldwin-Lomax model is better suited to the concept of an enstro-
phy cascade from the larger to the smaller scales (as witnessed in
two-dimensional turbulence).

The structural approach to obtaining a turbulence closure lies
in the prescription of a closed system of equations without the
use of any artificial dissipation through the introduction of a
hypothetical eddy viscosity. A popular structural closure for
subfilter scale (SFS) modeling is the approximate deconvolution
(AD) methodology [28] which has been studied in considerable
theoretical detail [39–45] and has also been applied to a large
number of practical flows [46–53]. AD-LES was conceptually
developed from the image processing community for the recon-
struction of sub-filter scales using Van-Cittert iterations which
is basically an iterative substitution methodology involving
repeated filtering to recover an approximation for the unfiltered
quantity from the filtered variable [54–56]. The primary strength
of this structural SFS modeling approach is the lack of any
physical assumptions or any phenomenological arguments about
the flow which makes the method particularly appealing for flows
with an inverse energy cascade as is the case in two-dimensional
turbulence [57,58].

Nomenclature

Ra Rayleigh number (Ra ¼ agDTh3
mj )

Pr Prandtl number (Pr ¼ m
j)

Re Reynolds number (Re ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ra=Pr

p
)

Nu Nusselt number
h dimensionless temperature
x dimensionless vorticity
w dimensionless streamfunction
u dimensionless velocity vector
u dimensionless velocity x-component
v dimensionless velocity y-component
me eddy viscosity
Prt turbulent Prandlt number
Sh SGS term for temperature equation
Sx SGS term for vorticity equation
CS Smagorinsky model coefficient

CB Baldwin-Lomax model coefficient
d characteristic grid filter scale
~d test filter scale
jSj absolute strain rate tensor
l0 mixing length scale
b relaxation parameter in AD
N the order of Van Cittert iterations
Nx numerical resolution in x-direction
Ny numerical resolution in y-direction
DT reference temperature difference
a thermal expansion coefficient
m fluid kinematic viscosity
j thermal diffusivity
h height of the channel
w width of the channel
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