
Large time steps in the explicit formulation of transient heat transfer

Eric Li a,b,c, Z.C. He b,⇑, Qian Tang d,e, G.Y. Zhang c

aDepartment of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
b State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, PR China
c State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, PR China
dDepartment of Mechanical Engineering, Hunan Institute of Engineering, Xiangtan 411101, PR China
eHunan Province Cooperative Innovation Center for Wind Power Equipment and Energy Conversion, Xiangtan 411101, PR China

a r t i c l e i n f o

Article history:
Received 18 September 2016
Received in revised form 16 January 2017
Accepted 17 January 2017

Keywords:
Numerical integration
Flexible integration points
Stability
Dynamic heat transfer
Critical time step

a b s t r a c t

In this paper, a generalized formulation of stiffness and mass using modified integration rules (MIR) with
flexible integration points is developed to improve the stability of transient heat transfer problems. With
adjustment of integration points in the stiffness, the softening or stiffening properties of discretized
model for heat transfer problems can be altered. In addition, it is found that the integration points in
the mass have a great effect on the critical time step for the explicit formulation of transient heat transfer
problems. With a proper selection of integration points in the mass, a much larger time step can be
applied in the analysis of transient heat transfer problems. Furthermore, it is observed that the final
steady solutions of transient heat transfer problems are identical regardless of locations of integration
points in the mass model. Numerical experiments including 2D heat transfer problems with different
boundary conditions including heat conduction, heat convection and radiation are studied to verify the
properties of flexible integration points in the stiffness and mass.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In the process of heat transfer problems of practical engineer-
ing, the efficient simulation and precise modelling are extremely
important. However, the analytical solutions are only available
for linear problems and mostly constrained to simple geometrical
domains. In addition, the experimental approach could be expen-
sive in most of engineering problems. For these reasons, many type
of numerical methods have been developed in the past decades
such as Boundary Element Method (BEM) [1], Finite Difference
Methods (FDM) [2,3], Finite Element Methods (FEM) [4–6] and
meshfree method [7], etc. Currently, the FEM is the probably the
most popular numerical method due to their attractive features
in handling the problems with complicated geometry and flexibil-
ity for many types of problems [8].

In general, two types of integration methods including explicit
[9–11] and implicit methods [12,13] are widely used in the simu-
lation of transient heat transfer problems. The key feature of the
explicit time-domain technique is that the evaluation of the field
solutions is processed based on the previous time step. Thus, it is
unnecessary to solve a system of equations involving any iterative
algorithm per time step. Although the computational effort per

time step in the explicit method is less than that using the implicit
method, the conditional stability is considered as the main short-
coming of explicit methods. As is known to all, a very small time
step must be used to ensure a stable solution in the explicit
method. That leads to a large number of time steps in the simula-
tion of transient heat transfer problems. On the contrary, the impli-
cit method plays a complementary role in the time integration. In
the implementation of the implicit method, the computation of the
field solution at each time step must be solved iteratively before
proceeding to next time step. As the implicit method is uncondi-
tionally stable for linear problems [12–15], a large time step could
be applied in the modelling.

In order to improve the computational efficiency of explicit
method, a lot of research effort following different directions has
been made in the past [9,11,14–18]. Recently, modified integration
rules (MIR) in the computation of the mass and stiffness were
developed by Guddati and Yue [19,20] for acoustic problems using
quadrilateral mesh. Following this, with employment of triangular
elements in 2D and tetrahedral elements in 3D, the mass-
redistributed finite element method (MR-FEM) with a parameter
r controlling the distribution of mass was developed in our past
work [21–23]. Our previous work has discovered an important fact
that the stability of dynamic quasi-harmonic system largely relies
on the maximum eigenfrequency of mass system [23,24]. With
re-distribution of mass in the mass matrix using triangular or
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tetrahedral elements, the numerical stability of transient quasi-
harmonic model can be improved significantly. This can be easily
done by shifting the integration point locations when computing
the entries of the mass matrix, while ensuring the mass
conservation.

In general, the lower-order quadrilateral elements are very pop-
ular in FEM framework, and such elements are widely used in prac-
tical application due to its accuracy and efficiency [8]. In this work,
aligned with the idea of MIR and the MR-FEM, the stiffness and
mass using MIR with flexible integration points are formulated,
which is aimed to improve the computational efficiency of
dynamic heat transfer problems. With alternation of the location
of integration points in the stiffness and mass models, it is found
that the softening and stiffening effect of the discretized model
can be adjusted. In addition, it is proved that the numerical stabil-
ity of transient heat transfer model can be improved significantly
based on the theoretical analysis and numerical examples. More
importantly, the steady solutions are always identical (not by
chance) regardless of integration point in the mass model, which
gives us the flexibility to adopt much larger time steps in the expli-
cit formulation of transient heat transfer problems without losing
the accuracy. Based on the quantitative study, it is found that the
numerical stability of discretized model is proportional to r value
as r > 0 in the mass model. While the critical time step in the tran-
sient heat transfer model decreases with increasing integration
point p in the stiffness model. The successful development of
robust, efficient and accurate explicit algorithms has opened an
important window in the simulation of general transient heat
transfer problems via manipulating the integration points directly.

The paper is organized as follows: Section 2 briefly describes
the standard FEM to solve the transient heat transfer problems,
and the mathematical formulations of stiffness and mass using
MIR with flexible integration points are also presented in Section 2.
Next, the stability of general transient heat transfer problems is
investigated in Section 3. A number of examples are studied in
detail to evaluate the performance of stiffness and mass with flex-
ible integration points in Section 4. Finally the conclusions from
the theoretical analysis and numerical results are made in
Section 5.

2. Formulation of stiffness and mass models using MIR with
flexible integration points

2.1. Discretization of governing equation of dynamic heat transfer
using FEM

For more effective discussion, the standard FEM using quadri-
lateral elements for transient heat transfer problem is first briefed.

The governing equation for transient heat transfer problem in a
2D domain X is expressed as follows:

@

@x
jx

@T
@x

� �
þ @

@y
jy

@T
@y

� �
þ Qðx; y; tÞ ¼ qc

@Tðx; y; tÞ
@t

ð1Þ

where c is the specific heat capacity of medium, Q is the source term
representing internal heat generation, q is the density of medium, T
is unknown temperature, t is the time, and j is the thermal
conductivity.

The boundary conditions for transient heat transfer problems
are given as follows:

Essential boundary condition:

T ¼ Te on C1 ð2Þ
Convection boundary condition:
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ny ¼ hðT � TaÞ on C2 ð3Þ

where h is the convective heat transfer coefficient, and n is the unit
normal vector.

Heat flux boundary condition
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where q is the prescribed heat flux.
Adiabatic boundary condition
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Radiation boundary condition
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where r is the Stefan Boltzmann constant for radiation
(5:67� 10�8 W m�2 K�4), and e is the emissivity taken as 1 unit in
this work.

Based on the standard FEM weak formulation, Eq. (1) can be
finally written in the following matrix form:

Ft ¼ ½M� _Tt þ ½Kþ C�Tt ð7Þ
where
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where N is shape function created by standard FEM.
In the explicit formulation, the equilibrium equation at time t

can be written as follows:

Ft ¼ M
TtþDt � Tt

Dt
þ ðKþ CÞTt ð12Þ

Re-arranging the terms leads to

MTtþDt ¼ FtDt � ðKþ CÞTtDt þMTt ð13Þ

2.2. Formulations of stiffness and mass using MIR with flexible
integration points

In the FEM framework, the isoparametric elements and Gauss
integration are usually adopted to calculate the entries of stiffness
matrix KIJ as follows

KIJ ¼
R
X BT
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BIðxÞ ¼ rsNIðxÞ ð15Þ
where N1 and N2 are the number of Gauss integration points in the n
and g axes, respectively. In addition, ni, gj are the integration points
and Wi and Wj are weighting coefficients.
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