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a b s t r a c t

The unsteady heat transfer between a cylinder and pulsating cross-flow is investigated for small pertur-
bations of flow velocity. In this regime the cycle-averaged heat transfer is constant and fluctuations of
flow variables can be described as linear, time-invariant dynamics. Numerical simulation of the response
to a sudden increase of the free stream velocity allows to visualize and interpret physically the flow and
heat transfer dynamics. Broadband excitation combined with linear system identification yields quanti-
tative predictions of the frequency response of heat transfer over a range of Reynolds and Strouhal num-
bers. It is concluded that the heat transfer dynamics are governed by several time scales, corresponding to
the response times of the velocity field and temperature field, respectively. The interaction of the differ-
ent time lags leads to a non-trivial dependence of the heat transfer frequency response on Strouhal and
Reynolds numbers. The frequency response functions exhibit a low-pass behavior with vanishing ampli-
tudes and a phase lag slightly above �p=2 at high Strouhal numbers. Excess gain above the quasi-steady-
state value of the heat transfer frequency response is observed for Strouhal numbers of order unity and
Reynolds numbers of order ten.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The heat transfer of a cylinder in cross-flow is one of the
archetypal problems in thermo-fluid mechanics. Due to its funda-
mental importance and technical relevance, different aspects of
this configuration have been studied intensively in a large number
of publications, review articles and textbooks, see e.g. [1–5] and
references therein.

The majority of studies addresses steady, laminar flow; or flows
at larger Reynolds numbers, where intrinsic unsteadiness arises
from flow instability or turbulence. Configurations where flow
unsteadiness results from impulsive or pulsating modulation of
the free stream have not been investigated as intensively. Never-
theless, a number of pertinent studies have been carried out focus-
ing either on the average heat transfer (heat transfer
enhancement) [6–8] or the dynamic behavior [9–14]. They are of
fundamental interest for thermo-fluid-dynamics and of relevance
for applications like hot-wire anemometry [15] or the Rijke tube
[16,17]. In the latter case, which is of particular interest for the
authors of the present paper, a heated wire mesh in pulsating
cross-flow can drive a self-excited thermo-acoustic instability.
Stability limits and pulsation amplitudes depend in a sensitive

manner on the dynamic response of heat transfer to velocity
fluctuations.

In a landmark paper, Lighthill [9] studied the response of lami-
nar skin friction and heat transfer to fluctuations in the stream
velocity. Lighthill presented approximate solutions for near-wall
velocity and temperature profiles for the case of small pulsation
amplitudes (linear regime) and evaluated the corresponding dis-
placement thickness, skin friction and heat flow rate, respectively.
For the case of a cylinder in low Reynolds number cross-flow, the
heat transfer frequency response in terms of amplitude reduction
and phase lag was determined. Lighthill states that his solution
‘‘applies only at Reynolds numbers for which the boundary-layer
approximation has some validity (say R > 10)” and ‘‘in the range
of Reynolds number for which a laminar boundary layer exists”
[9]. This study was thereafter extended to compressible flow by
Gribben [18].

Lighthill already suggested that the unsteady response of the
heat transfer rate to the perturbation of free stream velocity is
determined by the adaptation time of the viscous and thermal
boundary layers. For harmonic perturbation, this time lag controls
the phase of the heat transfer frequency response function. For low
frequencies, the time lag was estimated as one fifth of the ratio of
cylinder diameter and free stream velocity. However, since it was
unavoidable to introduce severe approximations to solve the equa-
tions of motion, Lighthill himself cautioned that his results would
only yield solutions of limited accuracy and range of validity and
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applicability. Lighthill’s results were only validated for velocity
amplitudes in the unsteady boundary layer [19], but never with
respect to heat transfer. Presumably, this is due to the difficulties
of time-resolved measurements of heat flow rates. Nevertheless,
Lighthill’s estimate for the time lag has since been used in many
studies of thermoacoustic instability of the Rijke tube [20–28]. In
particular, Subramanian et al. [25] carried out a comprehensive
bifurcation analysis of thermoacoustic instability. In this context,
Mariappan1 reports that with a time lag up to three times as large
as Lighthill’s value, much better agreement of stability analysis with
experimentally observed stability limits is obtained.

Several authors set out to improve Lighthill’s analysis. Gersten
[29] revisited Lighthill’s analysis and re-cast it into the Falkner-
Skan equation, introducing first and second order perturbations.
For two cases, i.e. the stagnation flow (Hiemenz layer) and the flow
over a flat plate (Blasius layer), Gersten develops transfer functions
as power series of the Strouhal number Sr. Similar to Lighthill’s

approach the solution comprises separate approximations for low
and high frequencies, respectively. A solution for compressible
flow was considered by Gribben [30]. Telionis [31] summarizes
advances in describing unsteady viscous flows, a whole chapter
of his book is devoted to fluctuations imposed on a steady flow.
Both analytical and numerical investigations applying the bound-
ary layer equations are discussed. Most notable in the context of
this work is the numerical solution of the unsteady boundary equa-
tions by Telionis and Romaniuk [32]. Although no transfer function
was derived, relations between fluctuating and steady temperature
gradients shed some light on the heat transfer behavior. In contrast
to Lighthill’s solutions, a peak in fluctuation amplitude at low
Strouhal numbers was reported. Applying a series expansion to
Oseen’s solution for a cylinder in cross-flow at low Péclet numbers,
Bayly [12] derives an expression for the unsteady heat transfer in
this regime. This formulation yields a transfer function for creeping
flow (Re < 1 assuming Pr � 0:7) around a cylinder.

The work of Kwon and Lee [13] is of particular relevance for the
present study. A stream function/vorticity formulation was used to
model incompressible, two-dimensional flow around a heater wire.

Nomenclature

Roman letters
_q heat flux density
A area
a speed of sound
B transfer function polynomial
b coefficient
cs time constant
cp isobaric specific heat capacity
d cylinder diameter
e stochastic disturbance
F transfer function polynomial/Force
f coefficient
G transfer function/frequency response
g impulse response
h step response
i imaginary unit
K steady state gain
k time increment
L length
l counter
N total number of datapoints/number of cells
n interaction index or order of polynomial
P modified pressure
p pressure
q time shift operator
s parameter (frequency)
T temperature
t time
Ts sampling time
u velocity in x-direction
V volume
v velocity in y-direction
x noise free model output
x; y; z coordinates
y model output
n
!

surface normal vector

Greek letters
a heat transfer coefficient
v thermal diffusivity
d perturbation parameter/boundary layer thickness/dif-

ference to steady state

_x heat source density
� small parameter/amplitude
k thermal conductivity
m kinematic viscosity
x angular frequency
U NRMSE-fit
/ polar angle/cell face flux
q density
r growth rate
s dimensionless time
h parameter vector
e prediction error

Dimensionless groups
Bi Biot number
CFL CFL number
Ec Eckert number
Fo Fourier number
He Helmholtz number
Ma Mach number
Nu Nußelt number
Pr Prandtl number
Re Reynolds number
Ri Richardson number
Sr Strouhal number
Wo Womersley number

Superscripts
^ estimated
� temporal average
0 fluctuating

Subscripts
0 steady-state
1 ambient
c cylinder
d domain
f fluid
m mean
s solid/step
w surface (wall)

1 Private communication, 2012.
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