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a b s t r a c t

We describe a quantitative model for heat separation in a fluid due to motion along a pressure gradient.
The physical model involved is relevant to one explanation for the temperature separation in a vortex
tube. This effect has a point of saturation in which the fluid’s temperature and pressure are related at
its boundaries by an adiabatic law. Vortex tube models sometimes assume that this saturation is achieved
in physical devices. We conclude that this is likely to be a safe assumption much of the time, but we
describe circumstances in which saturation might not be achieved. We propose a test of our model of
temperature separation.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A Ranque–Hilsch vortex tube is a device which separates ini-
tially constant-temperature gas into hot and cold streams. A typi-
cal vortex tube consists of a cylindrical container into which gas is
injected in a direction perpendicular to the cylinder axis. The
injected gas sets up a rapidly rotating flow inside the tube. Gas is
allowed to exit the tube from either end, but the exits of each
end are configured so that one end primarily draws gas from the
outer edge of the cylinder, whereas the other end primarily lets
out gas from the central region. The Ranque–Hilsch vortex tube
is named for Ranque, who invented the device, and Hilsch, who
made important early contributions to its study [1,2]. Vortex tubes
are used in industry for a variety of applications, generally involv-
ing spot cooling.

Since the discovery of vortex tubes, there has been debate and
discussion about the details of how the characteristic temperature
separation comes about. Some early theories suggested that the
effect was caused by friction between concentric annular regions
of the rotating tube [2]. Deissler and Perlmutter performed an anal-
ysis [3] which suggested that turbulent shear work was the most
important cause of the temperature separation. Kurosaka devel-
oped a theory [4] that explained the temperature separation in
terms of acoustic streaming. Stephan et al. suggested [5] that
Görtler vortices on the walls of the tube were an important factor.

One general approach, which has been used by several authors,
seeks to explain the temperature separation effect in terms of
adiabatic heating and cooling. The rotating flow sets up a radial

pressure gradient to balance the centrifugal potential. If some fluid
moves radially back and forth, it will tend to be adiabatically
heated as it moves from the core to the periphery and adiabatically
cooled as it moves from the periphery to the core. Kassner and
Knoernschild [6] introduced the premise that radial motion will
make the temperature distribution follow an adiabatic law, that is,

TðrÞ � pðrÞðc�1Þ=c
: ð1Þ

Their explanation involved an initially irrotational vortex (that
is, with angular velocity that scales with radius like r�2) which con-
verts to a rotational vortex (with constant angular velocity) due to
effects at the outer boundary and the core. They suggest that the
radial motion which brings about this temperature distribution
will be driven by turbulence.

Ahlborn and Groves have reported experimental observations
[7] of a secondary flow in a vortex tube, which includes both axial
and radial motion. Their measurements did not determine whether
this secondary flow was open or closed. Subsequently, Ahlborn and
collaborators suggested a model in which this secondary flow
played a key role [8,9]. In this model, the secondary flow sets up
a refrigeration cycle in the vortex tube.

Computational fluid dynamics work carried out by Behera et al.
[10] confirmed the existence of such a secondary flow for vortex
tubes in which the cold end diameter was small compared to the
diameter of the rest of the tube. However, they reported that it dis-
appears for vortex tubes in which the cold end diameter was less
small. Behera et al. found that the simulations with smaller cold
end diameters more closely matched the model put forth by Ahl-
born et al., but that the simulations with larger cold end diameters
did not closely match that model and had substantially larger tem-
perature separations. In general, computational studies have
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played an important role in vortex tube research, addressing a
wide variety of issues involving vortex tube flow and temperature
separation [11–15].

Liew et al. made a quantitative model using the adiabatic law
given in Eq. (1) and relying on the presence of radial motion within
the vortex tube [16]. In order to predict the temperatures mea-
sured at the two exits of the tube, they also included a term to
account for adiabatic deceleration as the fluid moves axially
toward the hot-stream exit.

In this paper, we explore a simple analytical model of a vortex-
tube-like heat pump relying on adiabatic heating and cooling of
fluid moving along a pressure gradient. We will use this model
to try to address some of the questions and assumptions involved
in existing vortex tube models. In particular, if a subset of a fluid is
moving up and down a pressure gradient, how reasonable is it to
assume that the entire system will attain the temperature distribu-
tion described in Eq. (1)? Furthermore, to what extent does it mat-
ter what the radial flow looks like — that is, if the flow is due to an
open secondary flow, a closed secondary flow, or a more general
kind of radial mixing?

2. The heat pump

To construct a quantitative model for heat transport, suppose a
parcel of gas is being moved up and down a potential gradient. A
schematic of the cycle is shown in Fig. 1. For simplicity, consider
a gravitational potential so that the pressure is higher at smaller
z. In practice, any pressure gradient between z ¼ 0 and z ¼ L pro-
duces the same effect. In a vortex tube, the centrifugal potential
produces the pressure gradient.

Broadly speaking, our model involves parcels of gas whose
motion along a pressure gradient causes them to be adiabatically
cooled and heated. While they are cooled (or heated), they do work
on the surrounding medium (or the other way around), which
facilitates energy transfer between the parcel and its surroundings.
However, this is not enough to establish a temperature gradient in
the surrounding fluid. If the work associated with adiabatic heating
and cooling were the only source of energy transfer, then the work
done during the cooling step would exactly cancel with the work
received in the heating step, and no net energy would be
exchanged between the moving parcels and the surrounding fluid.
For this reason, we include steps after each adiabatic heating or
cooling step during which the moving parcel is allowed to
exchange heat with its surroundings, either by conduction or by
mixing.

The parcel of gas starts at some position z ¼ L and internal tem-
perature T1 then moves to a new position z ¼ 0. Suppose the back-

ground medium has some pressure distribution pðzÞ with p0 � pð0Þ
and pL � pðLÞ. Then we can define a dimensionless constant

a � p0

pL

� �ðc�1Þ=c
: ð2Þ

c denotes the specific heat ratio cp=cv . We will assume that the
moving parcel is always in pressure equilibrium with its surround-
ings (the pressure equilibration time should be much shorter than
the temperature equilibration time). If the motion of the fluid parcel
is adiabatic, then the new temperature will be T2 ¼ aT1. Then sup-
pose the fluid element remains at z ¼ 0 for some period of time,
during which it exchanges heat with the surrounding medium. If
the surrounding medium has some temperature T0 at z ¼ 0, then
the temperature of the gas in the parcel during this time will satisfy
the heat transfer equation

dT
dt

¼ �Ah
cpNp

T2 � T0
� �

: ð3Þ

Here A is the area of the interface between the parcel of gas and
the environment, h is the heat transfer coefficient, cp is the
constant-pressure heat capacity, and Np is the number of particles
in the parcel. We will assume that the temperature inside the par-
cel is homogeneous. After heat has been exchanged for an interval
se, we get a new temperature. If the heat exchange is entirely due
to heat conduction, that new temperature will be

T3 ¼ T0 þ T2 � T0
� �

exp
�Ahse
cpNp

� �
: ð4Þ

If the fluid parcel then adiabatically rises back to z ¼ L, the new
temperature will be T4 ¼ T3=a. Finally, if the parcel once again
exchanges heat isobarically with the surrounding environment
before the cycle begins again, and if the background medium has
temperature TL at z ¼ L, we have

T1 ¼ TL þ ðT4 � TLÞ exp �Ahse
cpNp

� �
: ð5Þ

We will assume for the sake of simplicity that the exponential
factor �Ahse=cpNp is the same for both points in the cycle where
the parcel undergoes isobaric heat exchange (realistically, several
of those terms might vary, but the overall behavior of the system
should not change too much). We will define this factor by

r � exp
�Ahse
cpNp

� �
: ð6Þ

If r ¼ 1, then there is no transfer of energy during these steps of
the cycle and the adiabatic compression and expansion steps will
cancel each other out. If r ¼ 0, then the parcel of moving gas
achieves full thermal equilibrium with its surroundings during
the heat conduction steps.

If the parcel returns to the same temperature T1 with each
cycle, then it follows that T1, T2, T3, and T4 can each be expressed
in terms of the temperature of the background fluid. For instance,

T1 ¼ aTL þ rT0

að1þ rÞ : ð7Þ

We can use this information to solve for the total heat trans-
ferred between the parcel and the surrounding fluid during the
second and fourth steps. They are

Qbot ¼
cvNpð1� rÞ

1þ r
aTL � T0ð Þ ð8Þ

Q top ¼ � cvNpð1� rÞ
að1þ rÞ aTL � T0ð Þ: ð9Þ

Fig. 1. This diagram shows the heat transfer cycle used in our model.
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