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a b s t r a c t

This paper describes an original time-domain formulation to analyse saturated porous media. Standard
finite element procedures are employed to numerically discretize the spatial domain of the model and
a time-marching scheme based on the mechanical Green’s function of the problem is considered. The
Green’s function matrices are implicitly and numerically evaluated, taking into account the Newmark
method. The present methodology allows the system of equations of the solid and fluid phase to be trea-
ted separately, providing a more efficient and accurate solution procedure (smaller, simpler and better
conditioned systems of equations are analysed). At the end of the paper, numerical examples are pre-
sented, illustrating the potentialities of the new approach.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

For many everyday engineering problems, such as earthquake
engineering, soil–structure interaction, biomechanics, seismic
wave scattering, etc., dynamic porous media analysis is necessary
and over simplified theoretical models (e.g., pure elastodynamic
theory, etc.) may only represent a very crude approximation. Now-
adays, several numerical approaches, especially those considering
finite element procedures, are available to analyse complex dy-
namic porous media (see [1–5], for instance) and most of these ap-
proaches are based on the pioneering work of Biot [6–9] (for a
complete overview of the porous media theory evolution, Ref.
[10] is recommended).

The present work is focused on the numerical modelling of sat-
urated soils (i.e., soils that are composed of a solid phase with voids
filled with water) and it is based on the u � p formulation, as pre-
sented by Zienkiewicz et al. [11,12]. As commonly reported, the
u � p formulation is a very attractive approach because of both
its performance and simplicity; the variables of the model are, in
this case, the displacements of the soil skeleton (u) and the pres-
sures of the pore fluid (p).

In this paper, the pore-pressure field is calculated taking into
account usual time-integration techniques, and the displacements
of the model (and their time derivatives) are computed based on
implicit Green’s function matrices. This time-integration technique
was introduced by Soares [13] and Soares and Mansur [14,15], con-

sidering dynamic applications modelled by the finite element
method. Subsequently, the methodology was also employed to
develop alternative finite element/boundary element coupling pro-
cedures [16,17], as well as alternative boundary element time-
marching schemes [18].

In the implicit Green approach, the displacements and velocities
of the soil skeleton are evaluated considering a recurrence relation-
ship that employs the time-domain Green’s matrices of the dy-
namic problem. These Green’s matrices are evaluated implicitly
and numerically, taking into account standard time-integration
algorithms. The present work focuses on the Newmark method
to implicitly calculate the Green’s matrices and, as has been dem-
onstrated [13,14], if the trapezoidal rule is considered, the Green
approach becomes second order accurate and unconditionally
stable.

The expressions that arise from the implicit Green approach are
quite simple and effective, allowing the coupled system of equa-
tions of the porous medium to be properly modified. This renders
two smaller and simpler to deal with systems of equations: one re-
lated to the solid phase and another related to the fluid phase. As a
consequence, a more efficient and better-conditioned overall
methodology is obtained.

Considering standard finite element analysis, in the limit of zero
compressibility of water and soil grains and zero permeability, the
functions used to interpolate displacements and pressures must
fulfil either the Babuska and Brezzi [19,20] conditions or the sim-
pler patch test proposed by Zienkiewicz et al. [21]. These require-
ments exclude the use of elements with equal order interpolation
for pressures and displacements, for which spurious oscillations
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may appear. Several works have been presented regarding this
matter, as for instance the work of Huang and Zienkiewicz [22],
which presents a new class of unconditionally stable staggered im-
plicit–implicit time-stepping algorithms for coupled soil-pore fluid
dynamic problems; Pastor et al. [23], which describes a stabiliza-
tion technique that allows the use of both linear triangles or both
bilinear quadrilaterals for displacements and pressures; Pastor
et al. [24] and Li et al. [25], proposing a generalization of the frac-
tional-step method and its modified version, respectively, etc.
(Huang et al. [26] summarize the stabilization techniques that
have been proposed in the literature to overcome volumetric lock-
ing for the incompressible or nearly incompressible soil dynamic
behaviours). Alternative approaches, as those presented by
Tchonkova et al. [27] (where a mixed least-squares method for
solving Biot consolidation problems is developed) and by Zhang
and Zhou [28] (where the numerical manifold method is pre-
sented), should also be highlighted.

As is reported in the text that follows, taking into account the
present proposed formulation, no special procedures have to be
considered when analysing incompressible and impermeable med-
ia (the same discretization may be considered for both solid and
fluid phases, etc.), which also greatly contributes for the efficiency
of the methodology (especially when adaptive meshes are to be
considered).

In this paper, first (Section 2) the governing equations of the
model are presented and briefly discussed. Next, the finite element
modelling is considered and, in Section 3, the basic finite element
vectors and matrices are presented (Section 3 also describes a stan-
dard finite element formulation to treat saturated pore-solids,
which is employed later, providing numerical results for compari-
son). In Section 4, the implicit Green approach is discussed and the
proposed formulation to analyse pore-dynamic media is presented.
The stability analysis of the proposed methodology is carried out in
Section 5. Finally, at the end of the paper (Section 6), two numer-
ical applications are considered, illustrating the efficiency, accu-
racy and flexibility of the new technique.

2. Governing equations

The present work is focused on the u � p formulation, as pre-
sented by Zienkiewicz et al. [12]. The governing equations of the
model are

rij;j � qm€ui þ qmbi ¼ 0; ð1Þ
a_eii � ðkijp;jÞ;i þ ð1=QÞ _pþ a ¼ 0; ð2Þ
where Eq. (1) stands for the balance of momentum of the mixture
and Eq. (2) is a combination of the balance of mass and momentum
for the interstitial fluid.

In Eq. (1), rij is the total Cauchy stress (usual indicial notation for
Cartesian axes is considered); the effective stress is defined as
r0ij ¼ rij þ adijp, where a accounts for slight strain changes, p stands
for interstitial fluid pore-pressure and dij represents the Kronecker
delta (dij = 0 if i – j and dij = 1 if i = j). Further on in Eq. (1), ui stands
for the solid matrix displacement and bi for the body force distribu-
tion. Inferior commas and overdots indicate partial space (uj,i = ouj/
oxi) and time ð _ui ¼ oui=otÞ derivatives, respectively. qm = lqf +
(1 � l)qs stands for the mass density of the mixture, where qs

and qf are the mass density of the solid and fluid phase, respec-
tively, and l is the porosity of the medium. In Eq. (2), eij represents
the strain tensor and kij defines the permeability coefficients,
according to the D’Arcy seepage law. a stands for domain source
terms and the mixture parameter Q is defined by (1/Q) = l/
Kf + (a � l)/Ks, where the bulk moduli of the solid and fluid phase
are represented by Ks and Kf, respectively.

Eqs. (1) and (2), accompanied by appropriate initial and bound-
ary conditions, as well as proper constitutive laws, define the pore-

dynamic model under consideration. In the next section, discreti-
zation techniques, taking into account the finite element method,
are briefly discussed.

3. Standard finite element solution

Taking into account standard finite element techniques, after
introducing spatial approximations (as described by u(x, t) =
NuU(t) and p(x, t) = NpP(t), where N stands for spatial interpolation
matrices), the following system of equations can be obtained,
regarding Eqs. (1) and (2) [2,3,12]:

M€UðtÞ þ
Z

X
BT

r0ðtÞdX� QPðtÞ � fuðtÞ ¼ 0; ð3Þ

Q T _UðtÞ þHPðtÞ þ S _PðtÞ � fpðtÞ ¼ 0; ð4Þ

where B is the well-known strain matrix. The mass (M), permeabil-
ity (H), compressibility (S) and coupling (Q) matrices are defined as
follows:

M ¼
Z

X
NT

uqmNudX; ð5aÞ

H ¼
Z

X
rNT

pkrNpdX; ð5bÞ

S ¼
Z

X
NT

p
1
Q

NpdX; ð5cÞ

Q ¼
Z

X
BTamNpdX; ð5dÞ

where vector m (Eq. (5d)) plays the role of the Kronecker delta dij

and the entries of matrix k (Eq. (5b)) are defined by the permeabil-
ity coefficients kij.

Vectors fu(t) and fp(t) (in Eqs. (3) and (4), respectively) account
for prescribed traction ð�tÞ and flux ð�qÞ boundary conditions, as well
as domain forces (b) and sources (a). They are defined as follows:

fuðtÞ ¼
Z

Ct

NT
u
�tðtÞdCþ

Z
X

NT
uqmbðtÞdX; ð6aÞ

fpðtÞ ¼
Z

Cq

NT
p
�qðtÞdCþ

Z
X

NT
paðtÞdX; ð6bÞ

where X and C stand for the domain and the boundary of the mod-
el, respectively (C = Cu [ Ct = Cp [ Cq).

Eqs. (3)–(6) describe finite element spatial discretization
procedures. For time discretization, the following finite difference
approximations may be considered (generalized Newmark
method):

_Un ¼ _Un�1 þ ðDtÞ€Un�1 þ ðc1DtÞD€U; ð7aÞ

Un ¼ Un�1 þ ðDtÞ _Un�1 þ ðDt2=2Þ€Un�1 þ ðc2Dt2ÞD €U; ð7bÞ

Pn ¼ Pn�1 þ ðDtÞ _Pn�1 þ ðc3DtÞD _P; ð7cÞ

where Un stands for a numerical approximation for U(tn) and DU is
defined by DU = Un � Un�1 (analogous definitions are considered for
Pn and DP). For an unconditional stable scheme, the relations
c1 P 0.5, c2 P 0.5c1 and c3 P 0.5 must hold in Eqs. (7).

By taking into account Eqs. (7) and by introducing an iterative
procedure (e.g., DU(k+1) = DU(k) + D DU(k+1)) in order to numerically
treat the nonlinear system of Eqs. (3) and (4), the following final
system of equations can be obtained:

ð1=ðc2Dt2ÞÞMþ KT �Q

�Q T �ðc2Dt=c1ÞH� ðc2=ðc3c1ÞÞS

" #
DDUðkþ1Þ

DDPðkþ1Þ

� �

¼
Fu
ðkÞ

Fp
ðkÞ

" #
; ð8Þ

4646 D. Soares Jr. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 4645–4652



Download English Version:

https://daneshyari.com/en/article/499464

Download Persian Version:

https://daneshyari.com/article/499464

Daneshyari.com

https://daneshyari.com/en/article/499464
https://daneshyari.com/article/499464
https://daneshyari.com

