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a b s t r a c t

Based on the viewpoint that the flow direction can be accounted for by adding more weigh of the contri-
bution of the upstream grid point in evaluating the transport fluxes at the cell faces for the convection-
dominated flows, a type of high order schemes are proposed for solving convection-diffusion equations.
These schemes share the same main algorithm which is developed by integrating the convection-
diffusion equation expressed as the first order partial differential equations over selected regions and
applying the numerical quadrature with a weighting parameter for approximating the resulting integrals.
Interestingly, the error analysis allows us to determine the expressions of the weighting parameter for a
series of schemes with the third order scheme as the lowest and the infinite order as the highest order
scheme for the source free convection-diffusion problems. Numerical results show that the highest order
scheme achieves almost the same accuracy as the exact solution, and does not induce any unphysical
oscillation for the convection-dominated flows. Even the third order scheme shows obvious advantages
over the traditional finite volume method (FVM) and QUICK scheme in dealing with the multi-
dimensional convection-diffusion problems.

� 2016 Published by Elsevier Ltd.

1. Introduction

Many important phenomena in fluid dynamics and magnetohy-
drodynamics are governed by convection-diffusion equations [1–
4]. Since the exact solution of the convection-diffusion equation
is only available for the simple geometries and boundary condi-
tions and velocity fields, numerical solution is the main approach
for solving the convection-diffusion problems. Various numerical
methods, such as the finite difference method (FDM) [5–14], FVM
[15–20] and finite element method (FEM) [21–26], have been
widely applied in numerical simulation of the convection-
diffusion problems. Among them, the FVM has played an important
role in the most well-established CFD codes. At the second-order
level the FDM and FVM are essentially equivalent. The traditional
FVM based on the central differencing scheme is only suitable for
the diffusion-dominated low Reynolds number flows. For the
convection-dominated flows, it may induce unphysical oscilla-
tions. Although the basic upwind differencing (UD) scheme is the
most stable and unconditionally bounded scheme, its low order
of accuracy introduces a high level of false diffusion. In order to
avoid the unphysical oscillations near discontinuities, popular
schemes have been built on Godunov-type discretizations based
on the Total Variation Diminishing (TVD) property [27]. The TVD
solutions of convection-diffusion problems show far less false

diffusion than UD scheme. Moreover, they do not introduce any
unphysical overshoots and undershoots. However, all TVD schemes
will degenerate to lower order accuracy near local smooth extrema
[28]. In addition, the TVD scheme would consume more CPU-time
in comparison with an ordinary scheme [43].

Based on a different approach, Harten et al. -proposed a self sim-
ilar, uniformly high accurate, and essentially non-oscillatory (ENO)
interpolation for piecewise smooth function in solving hyperbolic
partial differential equations [29]. Later, the weighted ENO (WENO)
schemes were developed by using a convex combination of all can-
didate stencils instead of just one as in the original ENO [30]. The
WENO reconstructions are very successful in capturing shocks in
a non-oscillatory fashion while maintaining high accuracy in
smooth regions. However, Shen and Zha found that the fifth-order
WENO scheme will degenerate to the third order at a transition
point near discontinuities [31]. In addition, the WENO schemes
require uniform or at lease smoothly varying mesh size [32].
Furthermore, the WENO schemes are not favorable to simulate
the small scale turbulent flows [33]. As pointed out by Skála et al.,
the current high order schemes are numerically expensive, and
the changes and modifications of initial and boundary conditions
also require quite some effort [34]. Based on this viewpoint, Skála
et al. just took the simple second-order leap-frog discretization
scheme as the solver for developing a three-dimensional magneto-
hydrodynamical code [34]. Therefore, it is still of great value to
design numerical methods which are as simple as the traditional
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FVM on the one hand, and accurate and robust on the other hand for
simulating the complicated phenomena of fluid dynamics and
manetohydrodynamics, such as turbulence, magnetic reconnection
and dynamo actions. In order to seek some clues for achieving this
goal, we start with analyzing the FVM and Galerkin finite element
method from a different viewpoint.

The control volume integration which is a key step in the FVM
can keep the conservation of the relevant properties for each finite
size cell, which is one of main advantages of the FVM. In fact, the
control volume integration has another advantage that it reduces
the order of the highest derivative that appears in the governing
equations of fluid flows and heat transfers, which weakens the
requirement of the smoothness of the unknown function. Actually,
the Galerkin finite element method [22,24,26] demonstrates the
similar merit. Along this direction it is desirable to transform the
governing equation of the convection-diffusion problem in the par-
tial differential equation form to a pure integral equation form.
Based on this viewpoint some integration methods for the
convection-diffusion problems have already been developed. An
axial Green’s function method (AGM) was proposed for solving
the multi-dimensional elliptic boundary value problems [35].
Later, it was extended to simulate the Stokes flow [36]. Recently,
a local axial Green’s function method which is the localization of
the AGM was established for solving the convection-diffusion
equation [37]. Similarly, a nonstandard finite difference scheme
based on the Green’s function formulation was proposed for solv-
ing the reaction-diffusion-convection problems [38]. Recently, a
finite integration method was proposed for solving partial differen-
tial equations by using numerical quadrature or radial basis func-
tion interpolation [39]. Based on the Green’s function in a series
form and the integration formulation, we have designed an integral
equation approach for simulating the steady hydromagnetic
dynamo [40], the magnetic reconnection phenomena [41] and
the convection-diffusion problems [42]. In the following, we
attempt to develop a simple and efficient numerical method with
a high accuracy to solve the convection-dominated transport
problems.

2. Governing equation and discretization algorithm

For the sake of clarity in the description of the algorithm and
without loss of generality, consider the following two-
dimensional steady convection-diffusion equation:
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where ðx; yÞ is the position coordinate in the Cartesian coordinate
system, q is the density, u and v are respectively the velocity com-
ponents along x- and y-direction, / is a conserved property, Cx and
Cy are respectively the diffusion coefficients in x- and y-directions, S
is the source term. Eq. (1) can be rewritten into the following form:
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where Jx and Jy are the fluxes along x- and y-directions, respectively.
From Eqs. (1) and (2), the fluxes can be expressed as follows:

Jx ¼ qu/� Cx
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ð3aÞ

Jy ¼ qv/� Cy
@/
@y

ð3bÞ

Denote the fluid medium with an arbitrary geometry as V as
shown in Fig. 1. The point ðxiþ1; yjþ1Þ is a representative node point.
Its adjacent node points are ðxi; yjþ1Þ, ðxiþ2; yjþ1Þ, ðxiþ1; yjÞ, and

ðxiþ1; yjþ2Þ as depicted in Fig. 1. Denote xiþ1=2 and yjþ1=2 as
xi þ 0:5ðxiþ1 � xiÞ and yj þ 0:5ðyjþ1 � yjÞ, respectively. Integrating
Eq. (2) over the small domain ½xiþ1=2; xiþ3=2� � ½yjþ1=2; yjþ3=2� around
the node point ðxiþ1; yjþ1Þ yields
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By the rule of the integration by part, we obtainZ yjþ3=2
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where Siþ1;jþ1 ¼ R xiþ3=2
xiþ1=2

R yjþ3=2
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Sdxdy. Note that in Eq. (4) there are no

spatial derivatives of the fluxes. It can be viewed as a pure integral
equation. Application of the mid-point formula on the integrals in
Eq. (4) yields

½Jxðxiþ3=2; yjþ1Þ � Jxðxiþ1=2; yjþ1Þ�ðyjþ3=2 � yjþ1=2Þ þ ½Jyðxiþ1; yjþ3=2Þ
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Next integrating Eq. (3a) over ½xi; xiþ1� givesZ xiþ1
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Notice that Eq. (6) is also a pure integral equation. It can be
approximated in the following way:
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where aiði ¼ 1;2Þ are weighting parameters and satisfies 0 6 ai 6 1,
the subscripts in Eq. (7) are for the variable x, for example,
Jx;iþ1=2 ¼ Jxðxiþ1=2; yÞ and /i ¼ /ðxi; yÞ. Integrating Eq. (3a) over
½xiþ1; xiþ2� yields
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Fig. 1. Diagram of the convection-diffusion domain and grid points.
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