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a b s t r a c t

Stochastic Galerkin methods have become a significant tool for the resolution of stochastic partial differen-
tial equations (SPDE). However, they suffer from prohibitive computational times and memory require-
ments when dealing with large scale applications and high stochastic dimensionality. Some alternative
techniques, based on the construction of suitable reduced deterministic or stochastic bases, have been pro-
posed in order to reduce these computational costs. Recently, a new approach, based on the concept of gen-
eralized spectral decomposition (GSD), has been introduced for the definition and the automatic
construction of reduced bases. In this paper, the concept of GSD, initially introduced for a class of linear
elliptic SPDE, is extended to a wider class of stochastic problems. The proposed definition of the GSD leads
to the resolution of an invariant subspace problem, which is interpreted as an eigen-like problem. This
interpretation allows the construction of efficient numerical algorithms for building optimal reduced bases,
which are associated with dominant generalized eigenspaces. The proposed algorithms, by separating the
resolution of reduced stochastic and deterministic problems, lead to drastic computational savings. Their
efficiency is illustrated on several examples, where they are compared to classical resolution techniques.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Computer simulations have become an essential tool for the
quantitative prediction of the response of physical models. The
need to improve the reliability of numerical predictions often re-
quires taking into account uncertainties inherent to these models.

Uncertainties, either epistemic or aleatory, are commonly mod-
eled within a probabilistic framework. For many physical models, it
leads to the resolution of a stochastic partial differential equation
(SPDE) where the operator, the right-hand side, the boundary con-
ditions or even the domain, depend on a set of random variables.
Many numerical methods have been proposed for the approxima-
tion of such SPDEs. In particular, stochastic Galerkin methods
[1–4] have received a growing interest in the last decade. They
allow the obtention of a decomposition of the solution on a suitable
approximation basis, the coefficients of the decomposition being
obtained by solving a large system of equations. These methods,
which lead to high quality predictions, rely on a strong mathemat-
ical basis. That allows deriving a priori error estimators [5–7] but
also a posteriori error estimators [8,9] and therefore to develop
adaptive approximation techniques. However, many complex
applications require a fine discretization at both deterministic
and stochastic levels. This dramatically increases the dimension
of approximation spaces and therefore of the resulting system of

equations. The use of classical solvers in a black box fashion gener-
ally leads to prohibitive computational times and memory require-
ments. The reduction of these computational costs has now
become a key question for the development of stochastic Galerkin
methods and their transfer towards large scale and industrial
applications.

Some alternative resolution techniques have been investigated
over the last years in order to drastically reduce computational
costs induced by the use of Galerkin approximation schemes. Some
of these works rely on the construction of reduced deterministic
bases or stochastic bases (sets of random variables) in order to de-
crease the size of the problem [3,10,11]. These techniques usually
start from the assertion that optimal deterministic and stochastic
bases can be obtained by using a classical spectral decomposition
of the solution (namely a Karhunen–Loève or Hilbert Karhunen–
Loève expansion). The solution being not known a priori, the basic
idea of these techniques is to compute an approximation of the
‘‘ideal” spectral decomposition by ad hoc numerical strategies.
The obtained set of deterministic vectors (resp. random variables)
is then considered as a good candidate for a reduced deterministic
(resp. stochastic) basis on which the initial stochastic problem can
be solved at a lower cost. Let us here mention that this kind of
decomposition has already been introduced in various domains
of application such as functional data analysis [12], image analysis
[13], dynamical model reduction [14,15], etc. In other contexts, it is
also known as Principal Component Analysis, Proper Orthogonal
Decomposition or Singular Value Decomposition.
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In [16], a new approach has been proposed to define and com-
pute suitable reduced bases, without a priori knowing the solution
nor an approximation of it. This method, which is inspired by a
technique for solving deterministic evolution equations [17–19],
is based on the concept of generalized spectral decomposition
(GSD). It consists in defining an optimality criterion of the decom-
position based on the operator and right-hand side of the stochastic
problem. In the case of a linear elliptic symmetric SPDE, the ob-
tained decomposition can be interpreted as a generalized Karhun-
en–Loève expansion of the right-hand side in the metric induced
by the operator. In [16], it has been shown that corresponding opti-
mal reduced bases were solution of an optimization problem on a
functional which can be interpreted as an extended Rayleigh quo-
tient associated with an eigen-like problem. In order to solve this
problem, a power-type algorithm has been proposed. This algo-
rithm, by separating the resolution of reduced deterministic prob-
lems and reduced stochastic problems, has led to significant
computational savings.

The aim of this paper is to extend the concept of generalized
spectral decomposition to a wider class of stochastic problems
and to provide ad hoc efficient numerical strategies for its con-
struction. The proposed definition of the GSD leads to the resolu-
tion of an invariant subspace problem, which in fact can be
interpreted as an eigen-like problem. This interpretation allows
the development of suitable algorithms for the construction of
the decomposition. Algorithms are inspired by resolution tech-
niques for classical eigenproblems, such as subspace iterations or
Arnoldi techniques [20]. Significant computational savings are ob-
tained with these new algorithms, in comparison with classical
resolution techniques but also with previous GSD algorithms pro-
posed in [16].

The proposed method will be presented on a generic discretized
linear problem, encountered in many physical situations, without
taking care of the initial ‘‘continuous problem” and of the discreti-
zation techniques at the deterministic and stochastic levels. In this
paper, we consider that the solution of the fully discretized problem
is our reference solution. The proposed method then leads to an
approximation of this reference approximate solution. The study
of approximation error, i.e. the distance between the reference
solution and the solution of the continuous problem, is beyond
the scope of this paper. For details, the reader can refer to [4–9].

The outline of the paper is as follows. In Section 2, we briefly re-
call the principles of stochastic Galerkin methods leading to the
definition of a fully discretized version of the stochastic problem.
Section 3 introduces some possible strategies for building deter-
ministic or stochastic reduced bases. In Section 4, the principles
of the generalized spectral decomposition method (GSD) are intro-
duced. In particular, some mathematical considerations allow us to
exhibit the underlying eigen-like problem that defines the GSD.
Section 5 is devoted to the presentation of different algorithms
for building the GSD. In Sections 6 and 7, the method is applied
to two model problems: the first one is a linear elasticity problem
and the second one is based on transient heat equation. Those
model problems illustrate the capabilities of the method respec-
tively for elliptic and parabolic stochastic partial differential
equations.

2. Stochastic Galerkin methods

2.1. Stochastic modeling and discretization

We adopt a probabilistic modeling of the uncertainties. We con-
sider that the probabilistic content of the stochastic problem can be
represented by a finite dimensional probability space ðH;B; PÞ.
H � Rm is the space of elementary events,B an associated r-algebra

and P the probability measure. We consider that a preliminary
approximation step has been performed at the deterministic level
and that the stochastic problem reduces to the resolution of the fol-
lowing system of stochastic equations: find a random vector
u : h 2 H#uðhÞ 2 Rn such that we have P-almost surely

AðhÞuðhÞ ¼ bðhÞ; ð1Þ

where A : H! Rn�n is a random matrix and b : H! Rn is a ran-
dom vector. For the sake of clarity and generality, we do not focus
on the way to obtain this semi-discretized problem. In the following,
we will admit that the continuous and discretized problems are well-
posed, which means that the continuous problem and the approxi-
mation technique have ‘‘good mathematical properties”. Sections 6
and 7 will illustrate two continuous model problems and associated
approximation techniques that lead to a system of type (1) (by intro-
ducing usual spatial and temporal discretizations). Now, we intro-
duce an ad-hoc real-valued random function space S, classically
the space of second order random variables L2ðH; dPÞ, such that a
weak formulation of the stochastic problem (1) can be introduced.
This weak formulation, whose solution is not necessarily solution
of (1), reads: find u 2 Rn �S ffi ðSÞn such that

EðvTAuÞ ¼ EðvTbÞ 8v 2 Rn �S: ð2Þ

Approximation technique at the stochastic level consists in intro-
ducing a suitable finite dimensional approximation space

SP ¼ vðhÞ ¼
X
a2JP

vaHaðhÞ; va 2 R;Ha 2 S

( )
; ð3Þ

where fHaga2JP
is a basis of SP , and JP ¼ fai; i ¼ 1; . . . ; Pg is a set

of P indices. The approximate solution u 2 Rn �SP then reads

uðhÞ ¼
X
a2JP

uaHaðhÞ: ð4Þ

A classical way to define the approximation is to use a Galerkin
orthogonality criterion reading

EðvTAuÞ ¼ EðvTbÞ 8v 2 Rn �SP; ð5Þ

where E denotes the mathematical expectation. System (5) is equiv-
alent to the following system of n� P equations:X
b2JP

EðAHaHbÞub ¼ EðHabÞ 8a 2 JP : ð6Þ

Several choices have been proposed for the construction of a
stochastic approximation basis in L2ðH; dPÞ: polynomial chaos [1],
generalized polynomial chaos [21,22], finite elements [6,4], or mul-
ti-wavelets [23,24]. Such a choice depends on the regularity of the
solution at the stochastic level. Several techniques have been inves-
tigated for the adaptive choice of this basis, based on a posteriori error
estimation with respect to the continuous model [25,7–9]. For well-
posed approximate problems, the solution of (5) weakly converges
with P (in a mean-square sense) towards the solution of problem
(2). In this paper, we will consider that this approximation basis is gi-
ven (fixed P). The approximate solution of the fully discretized prob-
lem (5) will then be considered as our reference solution. The study
of the stochastic approximation error, i.e. the distance between solu-
tions of Eqs. (5) and (2), is beyond the scope of this article.

2.2. Classical techniques to solve the discretized problem

System (6) can be written in the following block-matrix form:

EðAHa1 Ha1 Þ � � � EðAHa1 HaP Þ

..

. . .
. ..

.

EðAHaP Ha1 Þ � � � EðAHaP HaP Þ

0BB@
1CCA

ua1

..

.

uaP

0BB@
1CCA ¼

EðbHa1 Þ

..

.

EðbHaP Þ

0BB@
1CCA: ð7Þ
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