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a b s t r a c t

This paper proposes a solution method for one-dimensional inverse heat conduction problems that
require a relatively long time. A hybrid technique is applied to analyze laser surface heating and spray
cooling on a hot surface. In the present study, the unknown temperature in half-range expansions form
is assumed, and the shifting function method is used to obtain an analytic solution. The coefficients of the
half-range expansions could be determined with the least-squares method in conjunction with the ana-
lytic solution and measured temperatures. Mathematical and experimental examples are given to illus-
trate the analyses.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Inverse heat conduction problems (IHCPs) depend on heat flux
and/or temperature measurements for the estimation of unknown
boundaries. The applied thermal engineering methods include
laser surface heating, the use of a heat exchanger, and rapid cooling
and quenching. The solution for the differential heat conduction
equation is obtained from a set of boundary conditions and an ini-
tial condition. The linear boundary value heat conduction problems
are separated into three groups, as outlined by Özisik [1]. However,
IHCPs are often mathematically ill-posed in that the solution is
highly sensitive to the input data. The solution techniques for ill-
posed heat transfer problems can be viewed in these textbooks
[2,3].

For one of the earliest IHCP solution, Stolz [4] used Duhamel’s
theorem to determine unsteady heat flux. Beck [5] calculated the
surface flux based on Duhamel’s theorem, and his proposed meth-
ods are similar to the methods given by Stolz [4]. Many investiga-
tors have studied one-dimensional inverse heat conduction
problems. Imber and Khan [6], Monde [7], and Monde et al. [8]
utilized Laplace transform techniques to obtain a closed form solu-
tion. Moreover, a regular iteration algorithm has been constructed
for IHCPs. Alifanov and Mikhailov [9] studied a nonlinear general-
ized thermal conductivity equation and obtained the nonstationary
thermal flux based on the conjugate gradient method. Wang et al.

[10] used the conjugate gradient method to analyze the problem of
laser heat treatment on a surface, with the LSM result serving as an
initial CGM guess. The finite differences method is a widely used
numerical method. Beck et al. [11] linearized nonlinear differential
equations and used this algorithm to solve the sensitivity problem.
Chen and Lee [12] proposed a hybrid technique for the Laplace
transform and finite differences in conjunction with the least-
squares method and experimental temperature data to estimate
spray cooling characteristics on a hot surface.

Most of the existing methods used to solve these kinds of time-
dependent inverse problems are tedious. For a time-dependent
boundary condition problem, Lee and Lin [13] generalized the solu-
tion method of Mindlin and Goodman [14] and developed the
shifting function method to study nonuniform beams. Lee and
Yan [15] extended the shifting function method to study the exact
deflection of an out-of-plane curved Timoshenko beam with non-
linear boundary conditions. Recently, an integral-transform-free
solution method for one-dimensional IHCPs with time-dependent
boundary conditions was presented by Lee and Huang [16,17].
They assumed the unknown temperature in polynomial function
form and used the shifting function method to obtain an analytic
solution. The coefficients of a polynomial function could be deter-
mined using the least-squares method in conjunction with the
analytic solution and measured temperature. In the study of [17],
the entire time domain is divided into several sub-time intervals.

In consideration of the entire time domain, we use the half-
range expansions as the unknown time-dependent temperature
in this paper. A hybrid inverse scheme of the shifting function
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method in conjunction with the least-squares method and experi-
mental temperature data is applied to analyze laser surface heating
or spray cooling on a hot surface. Consequently, the temperature
distribution and the heat flux with the entire time and space
domains could be obtained.

2. Mathematical formulation of 1D heat conduction

A one-dimensional boundary-value problem of heat conduction
in a finite region 0 6 x 6 L of a cylinder/slab can be introduced to
estimate an unknown surface temperature and heat flux. In Özisik’s
book [1], surface temperature and heat flux, which are two impor-
tant quantities in the heat conduction problem, were grouped into
three patterns. The general governing differential equation, bound-
ary conditions and initial condition are expressed as

@2Tðx; tÞ
@x2

¼ 1
a
@Tðx; tÞ

@t
; in 0 6 x 6 L; 0 < t < tf ð1Þ

k1
@Tðx; tÞ

@x
þ h1Tðx; tÞ ¼ f 1ðtÞ; at x ¼ 0; 0 < t < tf ð2Þ

k2
@Tðx; tÞ

@x
þ h2Tðx; tÞ ¼ f 2ðtÞ; at x ¼ L; 0 < t < tf ð3Þ

and

Tðx; tÞ ¼ T0ðxÞ; in 0 6 x 6 L; t ¼ 0; ð4Þ
where x and t denote the spatial-domain and time variables, respec-
tively. T is the temperature over the entire domain. The parameter a
is called thermal diffusivity, and a ¼ k=qc, where k, q, and c are the
thermal conductivity, density, and specific heat of the material,
respectively. L is the length of the cylinder/slab. T0 is the initial tem-
perature. k1 and h1 are the thermal conductivity and the heat con-
vection coefficients at x ¼ 0, respectively. k2 and h2 are the thermal
conductivity and the heat convection coefficients at x ¼ L, respec-
tively. tf denotes the time that laser surface heating or spray cooling
is terminated. f 1ðtÞ and f 2ðtÞ are the time-dependent temperature
functions at x ¼ 0 and x ¼ L, respectively.

3. Analytic solutions

The general analytic solution for the differential Eq. (1) of 1D
heat conduction with boundary and initial conditions (2)–(4) can
be derived.

3.1. Change of variable

The shifting function method developed by Lee and Lin [13] is
given below as:

Tðx; tÞ ¼ vðx; tÞ þ
X2
i¼1

f iðtÞgiðxÞ; ð5Þ

where giðxÞ, i ¼ 1;2, are the shifting functions to be specified, and
vðx; tÞ is the transformed function.

Substituting Eq. (5) into Eqs. (1)–(4) yields the differential equa-
tion for vðx; tÞ and the associated boundary conditions:

@2vðx; tÞ
@x2

� 1
a
@vðx; tÞ

@t
¼
X2
i¼1

1
a
dfiðtÞ
dt

giðxÞ � f iðtÞ
d2giðxÞ
dx2

" #
; ð6Þ

at x = 0,

k1
@vðx; tÞ

@x
þ h1vðx; tÞ ¼ f 1ðtÞ �

X2
i¼1

f iðtÞ k1
dgiðxÞ
dx

þ h1giðxÞ
� �

; ð7Þ

at x ¼ L,

k2
@vðx; tÞ

@x
þ h2vðx; tÞ ¼ f 2ðtÞ �

X2
i¼1

f iðtÞ k2
dgiðxÞ
dx

þ h2giðxÞ
� �

: ð8Þ

The associated initial condition is

vðx;0Þ ¼ Tðx;0Þ �
X2
i¼1

f ið0ÞgiðxÞ: ð9Þ

3.2. Shifting functions

The shifting functions giðxÞ; i ¼ 1; 2, in Eqs. (6)–(8) are chosen
to satisfy the differential equation

d2giðxÞ
dx2

¼ 0; ð10Þ

and the following boundary conditions,

at x = 0,

k1
dgiðxÞ
dx

þ h1giðxÞ ¼ dij; j ¼ 1; ð11Þ

at x ¼ L,

k2
dgiðxÞ
dx

þ h2giðxÞ ¼ dij; j ¼ 2; ð12Þ

where dij is a Kronecker symbol.
These two shifting functions g1ðxÞ and g2ðxÞ can be easily deter-

mined as

g1ðxÞ ¼
h2

k1h2 � ðk2 þ h2LÞh1
x� k2 þ h2L

k1h2 � ðk2 þ h2LÞh1
; ð13Þ

g2ðxÞ ¼ � h1

k1h2 � ðk2 þ h2LÞh1
xþ k1

k1h2 � ðk2 þ h2LÞh1
: ð14Þ

With Eqs. (10)–(12), the transformed governing differential Eq.
(6) of 1D heat conduction becomes

@2vðx; tÞ
@x2

� 1
a
@vðx; tÞ

@t
¼ Fðx; tÞ; ð15Þ

where Fðx; tÞ ¼
X2
i¼1

1
a
dfiðtÞ
dt

giðxÞ
� �

; ð16Þ

and the associated boundary conditions (7) and (8) can be reduced
to homogeneous conditions as

k1
@vð0; tÞ

@x
þ h1vð0; tÞ ¼ 0; ð17Þ

and

k2
@vðL; tÞ

@x
þ h2vðL; tÞ ¼ 0: ð18Þ

The transformed initial condition is

vðx;0Þ ¼ Tðx;0Þ �
X2
i¼1

f ið0ÞgiðxÞ ¼ v0ðxÞ: ð19Þ

3.3. Solution of transformed variable

To use the eigenfunction expansion method, the transformed
variable vðx; tÞ in Eqs. (15)–(19) can be expressed as

vðx; tÞ ¼
X1
n¼1

/nðxÞBnðtÞ: ð20Þ
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