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1. Introduction

Inverse heat conduction problems (IHCPs) depend on heat flux
and/or temperature measurements for the estimation of unknown
boundaries. The applied thermal engineering methods include
laser surface heating, the use of a heat exchanger, and rapid cooling
and quenching. The solution for the differential heat conduction
equation is obtained from a set of boundary conditions and an ini-
tial condition. The linear boundary value heat conduction problems
are separated into three groups, as outlined by Ozisik [1]. However,
IHCPs are often mathematically ill-posed in that the solution is
highly sensitive to the input data. The solution techniques for ill-
posed heat transfer problems can be viewed in these textbooks
[2,3].

For one of the earliest IHCP solution, Stolz [4] used Duhamel’s
theorem to determine unsteady heat flux. Beck [5] calculated the
surface flux based on Duhamel’s theorem, and his proposed meth-
ods are similar to the methods given by Stolz [4]. Many investiga-
tors have studied one-dimensional inverse heat conduction
problems. Imber and Khan [6], Monde [7], and Monde et al. [8]
utilized Laplace transform techniques to obtain a closed form solu-
tion. Moreover, a regular iteration algorithm has been constructed
for IHCPs. Alifanov and Mikhailov [9] studied a nonlinear general-
ized thermal conductivity equation and obtained the nonstationary
thermal flux based on the conjugate gradient method. Wang et al.
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[10] used the conjugate gradient method to analyze the problem of
laser heat treatment on a surface, with the LSM result serving as an
initial CGM guess. The finite differences method is a widely used
numerical method. Beck et al. [11] linearized nonlinear differential
equations and used this algorithm to solve the sensitivity problem.
Chen and Lee [12] proposed a hybrid technique for the Laplace
transform and finite differences in conjunction with the least-
squares method and experimental temperature data to estimate
spray cooling characteristics on a hot surface.

Most of the existing methods used to solve these kinds of time-
dependent inverse problems are tedious. For a time-dependent
boundary condition problem, Lee and Lin [13] generalized the solu-
tion method of Mindlin and Goodman [14] and developed the
shifting function method to study nonuniform beams. Lee and
Yan [15] extended the shifting function method to study the exact
deflection of an out-of-plane curved Timoshenko beam with non-
linear boundary conditions. Recently, an integral-transform-free
solution method for one-dimensional IHCPs with time-dependent
boundary conditions was presented by Lee and Huang [16,17].
They assumed the unknown temperature in polynomial function
form and used the shifting function method to obtain an analytic
solution. The coefficients of a polynomial function could be deter-
mined using the least-squares method in conjunction with the
analytic solution and measured temperature. In the study of [17],
the entire time domain is divided into several sub-time intervals.

In consideration of the entire time domain, we use the half-
range expansions as the unknown time-dependent temperature
in this paper. A hybrid inverse scheme of the shifting function
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method in conjunction with the least-squares method and experi-
mental temperature data is applied to analyze laser surface heating
or spray cooling on a hot surface. Consequently, the temperature
distribution and the heat flux with the entire time and space
domains could be obtained.

2. Mathematical formulation of 1D heat conduction

A one-dimensional boundary-value problem of heat conduction
in a finite region 0 < x < L of a cylinder/slab can be introduced to
estimate an unknown surface temperature and heat flux. In Ozisik’s
book [1], surface temperature and heat flux, which are two impor-
tant quantities in the heat conduction problem, were grouped into
three patterns. The general governing differential equation, bound-
ary conditions and initial condition are expressed as

OPT(x,t) 10T(x,t)

RV T n0<x<L, 0<t<ty (1)
k1aTéi’t)+h1T(x,t):f1(t), atx=0,0<t<ty (2)
k2%+hzr(x,t):fz(t), atx=L 0<t<f (3)
and
T(x,t) =To(x), In0<x<L, t=0, (4)

where x and t denote the spatial-domain and time variables, respec-
tively. T is the temperature over the entire domain. The parameter o
is called thermal diffusivity, and o = k/pc, where k, p, and c are the
thermal conductivity, density, and specific heat of the material,
respectively. L is the length of the cylinder/slab. Ty is the initial tem-
perature. k; and h; are the thermal conductivity and the heat con-
vection coefficients at x = 0, respectively. k, and h, are the thermal
conductivity and the heat convection coefficients at x = L, respec-
tively. t; denotes the time that laser surface heating or spray cooling
is terminated. f,(t) and f,(t) are the time-dependent temperature
functions at x = 0 and x = L, respectively.

3. Analytic solutions

The general analytic solution for the differential Eq. (1) of 1D
heat conduction with boundary and initial conditions (2)-(4) can
be derived.

3.1. Change of variable

The shifting function method developed by Lee and Lin [13] is
given below as:

2
T(x,t) = v(x,t) + ) _fi(t)gi(x), ()
i=1

where g;(x), i = 1,2, are the shifting functions to be specified, and
v(x,t) is the transformed function.

Substituting Eq. (5) into Eqs. (1)-(4) yields the differential equa-
tion for v(x,t) and the associated boundary conditions:
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The associated initial condition is
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v(x,0) = T(x,0) — > fi(0)gi(X). 9)

i=1

3.2. Shifting functions

The shifting functions g;(x), i =1, 2, in Egs. (6)-(8) are chosen
to satisfy the differential equation

d’g;(x)
dx?
and the following boundary conditions,

=0, (10)
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where g is a Kronecker symbol.
These two shifting functions g, (x) and g, (x) can be easily deter-
mined as

h, ky + hoL
- - ; 1
gl (X) k1h2 - (k2 —+ th)h] X k1h2 - (k2 + th)h] ’ ( 3)
h k
A 1 (14)

_ (](2 + th)h] X+ k] h2 — (kz + th)h1 '

With Egs. (10)-(12), the transformed governing differential Eq.
(6) of 1D heat conduction becomes

Fux,t) 10v(xt)
T T L (15)
where F(x,t) = EZ: [; dfd(t )g (x)}, (16)

and the associated boundary conditions (7) and (8) can be reduced
to homogeneous conditions as

ov(0,t) B
k1 X + h] Z/(O7 t) = 07 (17)
and
k, avg D byl t) =0, (18)

The transformed initial condition is

2

v(x,0) = T(x,0) = > fi(0)g(X) = vo(x). (19)

i=1

3.3. Solution of transformed variable

To use the eigenfunction expansion method, the transformed
variable »(x,t) in Eqs. (15)-(19) can be expressed as

%6 = 9u(X)Balt). (20)
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