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a b s t r a c t

Natural convection of micropolar fluid in a right-angled wavy triangular cavity has been analyzed numer-
ically. Governing equations formulated in dimensionless stream function, vorticity and temperature
using the Boussinesq and Eringen approaches with appropriate initial and boundary conditions have been
solved by finite difference method of the second-order accuracy. The effects of the dimensionless time,
Prandtl number, vortex viscosity parameter, and undulation number on streamlines, isotherms, vorticity
isolines as well as average Nusselt number at wavy wall and fluid flow rate inside the cavity have been
studied. Obtained results have revealed essential heat transfer reduction and fluid flow attenuation with
vortex viscosity parameter.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The theory of simple microfluids, as developed by Eringen [1],
has been a field of active research for the last few decades due to
many practical applications. In the last few decades, the research
interest in micropolar fluid theory has significantly increased due
to its enormous applications in many industrial processes, such
as, flow of low concentration suspensions, liquid crystals, animal
blood, lubrication, colloidal suspensions, turbulent shear flows,
etc. (see Wang and Chen [2]). This theory can be also used to
explain the experimentally observed phenomenon of the drag
reduction near a rigid body in fluid containing small amounts of
additives when compared with the skin friction coefficient in the
same fluids without additives (see Wang and Chen [2]). These flu-
ids cannot be explained on the basis of Newtonian fluid flow the-
ory. Micropolar fluids represent a subclass of microfluids and
were also introduced by Eringen [3]. These fluids display the effects
of local rotary inertia and couple stresses that can be used to
explain the flow features of the above-mentioned fluids for which
the classical theory of Newtonian fluids is inadequate. The theory
of micropolar fluids was extended subsequently by Eringen [4] to
include thermal effects, to the so-called thermomicropolar fluids.

Since Eringen [1] has published the micropolar fluid theory, many
authors have investigated various flow and heat transfer problems.
The common comment in respect of micropolar fluids was that
there are no experiments whatsoever in which any of the material
moduli could be measured. Hoyt and Fabula [5] has shown
experimentally that the fluids containing minute polymeric
additives indicate considerable reduction of the skin friction (about
25–30%), a concept which can be well explained by the theory of
micropolar fluids. Power [6] has shown that the fluid flowing in
brain (Cerebrospinal fluid) is adequately modeled by micropolar
fluids. The works of Migun [7] and Kolpashchikov et al. [8]
demonstrated an experimental method of determining parameters
characterizing the microstructure of such fluids and seems to have
laid to rest many unanswered questions on the theory. Extensive
reviews of the theory and applications can be found in the review
articles by Ariman et al. [9,10] and the recent books by
Łukaszewicz [11] and Eringen [12]. For more recent developments
in the field of non-Newtonian fluid dynamics see Hayat and Hutter
[13], Rajagopal and Srinivasa [14], Fetecau et al. [15], Lok et al. [16],
Magyari et al. [17], Gibanov et al. [18] as well as references therein.
We also mention here that the boundary layer theory of micropolar
fluids were founded by Peddieson and McNitt [19], and Wilson
[20].

It is worth mentioning that an important contribution in
micropolar flow dynamics was made by Sankara and Watson
[21], when they investigated the flow of micropolar fluids past a

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.09.044
0017-9310/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: popm.ioan@yahoo.co.uk (I. Pop).

International Journal of Heat and Mass Transfer 105 (2017) 610–622

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2016.09.044&domain=pdf
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.09.044
mailto:popm.ioan@yahoo.co.uk
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.09.044
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


stretching sheet. Heruska et al. [22] extended the work of Sankara
and Watson [21] by considering the mass suction or injection
through the porous sheet. Hassanien and Gorla [23] explained
the heat transfer in a micropolar flow over a non-isothermal
stretching sheet with suction and blowing. Na and Pop [24] also
considered the boundary layer flow of micropolar fluid due to con-
tinuously stretching boundary. Also, Ishak et al. [25] have investi-
gated the heat transfer over a stretching surface with variable heat
flux in micropolar fluids.

On the other hand, it should be mentioned that wavy
geometries are used in many engineering systems as a means of
enhancing the transport performance (see the papers by Chiu
and Chou [26] Chu et al. [27], Wang and Chen [2], Mahmud and
Fraser [28], Chen and Cho [29], Al-Amiri et al. [30], Sheremet
et al. [31–33] and the book by Shenoy et al. [34]).

The main objective of the present study is to analyze numeri-
cally the natural convection of micropolar fluid in a right-angled
wavy triangular cavity. The governing equations formulated in
dimensionless stream function, vorticity and temperature using
the Boussinesq approximation and Eringen’s approach [1,3,4] have
been solved by finite difference method. The effects of the dimen-
sionless time, Prandtl number, vortex viscosity parameter, and
undulation number on streamlines, isotherms, vorticity isolines
as well as average Nusselt number at wavy wall and fluid flow rate
have been studied. To the best of our knowledge, this problem has
not been studied before. Thus, the results are new and original. On
the other hand, it should be pointed out that the Navier–Stokes
equations which govern fluid flow problems must be solved
numerically in most of time. Exact solutions can be obtained for
small parts of practical problems because most of these problems
are complex. Numerical simulation of incompressible fluid flow
problems in complex geometries is a computational challenge.

We mention to this end that natural convection heat transfer in
cavities is importance to many engineering systems, such as solar
energy collectors, building energy components, cooling of electri-
cal units, and the heat preservation of thermal transport circuits.
To date, there are many studies involving natural convection in a
square cavity, and less work has been done on triangular-type
enclosures. In solar heating for example, many geometric configu-
rations might be considered based on the heater location on the
side walls of the square, triangular-type, and so on. Moreover,
study of natural convection in triangular enclosures can be found
in the design of building roofs and attics, solar energy collectors,
cooling of electronical devices as PC, TV etc. It arises in these
geometries due to temperature difference between inside heating
and environmental conditions. Natural convection in triangular
enclosures under different thermal boundary conditions in non-
porous media using air as working fluid has been extensively stud-
ied in the past years (see Varol et al. [35]).

2. Mathematical formulation

Fig. 1 shows the considered right-angled triangular cavity filled
with a micropolar fluid. The domain of interest is bounded by bot-
tom adiabatic wall of length L, left isothermal wavy wall of vertical
length H with high temperature Th and right inclined isothermal
wall with low temperature Tc. All walls of the cavity are supposed
to be rigid and impermeable. It is considered that the left wavy
wall and right inclined flat wall of the cavity are described by the
relations �x1 ¼ L� L½aþ b cosð2pk�y=HÞ� and �x2 ¼ Lð1� �y=HÞ, respec-
tively, where a + b = 1.

The physical properties of the micropolar fluid are supposed to
be constant except for the density in the buoyancy force term of

Nomenclature

A aspect ratio parameter
a wavy contraction ratio
b shape parameter
Da Darcy number
g gravitational acceleration (m�s�2)
H height of the cavity (m)
j micro-inertia density (m2)
K dimensionless micropolar parameter or dimensionless

vortex viscosity parameter
L bottom wall length (m)
N microrotation vector (s�1)
N dimensionless microrotation vector component
N dimensional microrotation vector component (s�1)
n normal unit vector
n dimensionless micro-gyration parameter
Nu local Nusselt number
Nu average Nusselt number
�p dimensional pressure (Pa)
Pr Prandtl number
Ra Rayleigh number
S length of the wavy wall (m)
T dimensional temperature of the fluid (K)
t dimensional time (s)
Tc dimensional temperature of the cooled wall (K)
Th dimensional temperature of the hot wall (K)
u, v dimensionless velocity components along the axes x

and y, respectively
�u; �v dimensional velocity components along the axes �x; �y

(m�s�1)

V dimensional velocity vector (m�s�1)
�x dimensional coordinate measured along the bottom

wall of the cavity (m)
�x1 dimensional location of the left wavy wall (m)
�x2 dimensional location of the right inclined wall (m)
�y dimensionless coordinate measured along the vertical

wall (m)
x, y dimensionless Cartesian coordinates

Greek symbols
a thermal diffusivity (m2�s�1)
b volumetric expansion coefficient of the fluid (K�1)
c spin-gradient viscosity (kg�m�s�1)
Ds dimensionless time step
dh thickness of the thermal boundary layer (m)
dv thickness of the momentum boundary layers (m)
h dimensionless temperature
j dimensional micro-rotation or dimensional vortex vis-

cosity (Pa�s)
k undulation number
l dynamic viscosity (Pa�s)
m kinematic viscosity (m2�s�1)
n, g new independent dimensionless variables
q fluid density (kg�m�3)
rðyÞ wavy wall equation
s dimensionless time
w dimensionless stream function
x dimensionless vorticity
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