
A simplified thermal lattice Boltzmann method without evolution
of distribution functions

Z. Chen, C. Shu ⇑, D. Tan
Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore

a r t i c l e i n f o

Article history:
Received 31 March 2016
Received in revised form 14 July 2016
Accepted 8 October 2016

Keywords:
Chapman–Enskog expansion analysis
Simplified thermal lattice Boltzmann
method
Lattice Boltzmann equation
Stability analysis
Thermal flows

a b s t r a c t

In this paper, a simplified thermal lattice Boltzmann method (STLBM) without evolution of the distribu-
tion functions is developed for simulating incompressible thermal flows. With the assistance of the frac-
tional step technique, the macroscopic governing equations recovered from Chapman–Enskog (C–E)
expansion analysis are resolved through a predictor–corrector scheme. Then in both the predictor and
corrector steps, using the isentropic properties of lattice tensors and relationships of C–E analysis, the
macroscopic flow variables are explicitly calculated from the equilibrium and non-equilibrium distribu-
tion functions. In STLBM, the equilibrium distribution functions are calculated from the macroscopic vari-
ables, while the non-equilibrium distribution functions are evaluated from the differences between two
equilibrium distribution functions at different locations and time levels. Therefore, STLBM directly
updates the macroscopic variables during the computational process, which lowers the virtual memory
cost and facilitates the implementation of physical boundary conditions. Through von Neumann stability
analysis, the present method is proven to be unconditionally stable, which is further validated by numer-
ical tests. Three representative examples are presented to demonstrate the robustness of STLBM in prac-
tical simulations and its flexibility on different types of meshes and boundaries.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In recent decades, the lattice Boltzmann method (LBM) has
been continuously developed [1–4] and applied to various kinds
of problems [5–11]. As a mesoscopic method, LBM offers an alter-
nate approach to study the fluid problems, and is welcome among
researchers due to its simplicity and explicitness. Based on kinetic
theory, LBM solves the lattice Boltzmann equation (LBE) by track-
ing the evolution of the distribution function, which consists of
two simple processes: ‘‘streaming” and ‘‘collision”. Through Chap-
man–Enskog (C–E) expansion analysis, LBE can be proven to
recover the macroscopic Navier–Stokes (N-S) equations. The rele-
vant macroscopic properties can be easily obtained from the
moments of the distribution functions.

Effective simulation of thermal flows has always been a popular
topic in Computational Fluid Dynamics (CFD) due to its value both
in academic explorations and in engineering applications [12–18].
As an advanced CFD method, the lattice Boltzmann method has
also been extended to this topic [19–23]. Unlike isothermal flows,

the effects of the temperature/energy are considered in simulating
thermal flows. Therefore, various LBM models were proposed to
incorporate the evolution of the temperature/energy into the com-
putational process, which can be categorized into three
approaches: the multispeed model [24,25], the passive scalar
approach [26,27] and the thermal energy distribution model [28–
32]. Among these models, the thermal energy distribution model
is most recently developed, and has attracted much attention
due to its better numerical stability. In this model, the thermal
effects are incorporated into the computation by the evolution of
the internal energy distribution function. Recently, Peng et al.
[33] further simplified the thermal energy distribution model by
neglecting the compression effect and heat dissipation. Such sim-
plifications are robust in thermal simulations at the incompressible
limit. The thermal energy distribution function model [30,34,35]
remains the only method able to simulate incompressible viscous
flows with imposed heat flux at the boundary (Neumann boundary
condition).

The thermal LBM inherits the merits of the standard isothermal
LBM but, at the same time, also suffers from its drawbacks. Firstly,
due to the lattice uniformity, the thermal LBM is also only applica-
ble on uniform meshes. Extra computational efforts are required to
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apply it on non-uniform meshes. Secondly, the thermal LBM
[28,33] requires large amounts of virtual memory, because the
density and the internal energy distribution functions along all
lattice velocity directions and at every grid point need to be stored
during the computation. Another drawback is that the physical
boundary conditions need to be transformed into the conditions
of the distribution functions, which is a common problem for
methods developed within LBM framework. Such transformations
are quite challenging for cases with curved boundaries. In addition,
constrained by numerical instability, simulating cases with high
Reynolds number or high Rayleigh number is quite challenging
for standard LBM [36]. To overcome these shortcomings, Wang
et al. [37,38] combined the lattice Boltzmann solver and conven-
tional Navier–Stokes solver, and proposed a novel thermal lattice
Boltzmann flux solver (TLBFS). In TLBFS, FVM is applied globally
to solve the macroscopic governing equations, while LBE solutions
are reconstructed through C–E analysis at each cell interface to
recover macroscopic fluxes. One important contribution of TLBFS
is its treatment of the non-equilibrium distribution function, which
is approximated by the difference between two equilibrium distri-
bution functions at different locations and time levels. This solver
has been proven to be both accurate and efficient, with easy imple-
mentation of boundary conditions. However, it should be noted
that TLBFS involves two sets of solvers, which makes it inconve-
nient for practical applications. This flaw motivates us to develop
the present simplified thermal lattice Boltzmann method which
retains the merits of TLBFS but only requires a single solver.

In this paper, we propose a simplified thermal lattice Boltz-
mann method (STLBM) for simulating incompressible thermal
flows. Based on the Chapman–Enskog expansion analysis, the
LBE solutions can satisfy the macroscopic governing equations
with the second-order of accuracy in space. By applying frac-
tional step method, the recovered macroscopic governing equa-
tions can be solved through a predictor–corrector scheme. In
STLBM, the formulations in the predictor–corrector steps are
reconstructed from lattice properties and the relationships given
by C–E analysis, which only involve equilibrium and non-
equilibrium distribution functions. Specifically, the equilibrium
distribution functions are obtained from the macroscopic flow
variables; and the non-equilibrium distribution function is simply
approximated by the difference between two equilibrium distri-
bution functions at different locations and time levels. Therefore,
unlike the standard thermal lattice Boltzmann method which
tracks the evolution of the distribution functions, the present
STLBM directly updates the macroscopic variables. Accordingly,
without storing the distribution functions, STLBM presents a
remarkable saving in virtual memory. Additionally, the physical
boundary conditions can be implemented directly. Finally, the
simplified lattice Boltzmann method shows nice performance in
terms of numerical stability, and can be analytically proven to
be unconditionally stable.

The rest of the paper is organized as follows. In Section 2, the
basic macroscopic governing equations, the thermal lattice Boltz-
mann method, and the Chapman–Enskog expansion analysis that
links these two systems are briefly introduced. Section 3 gives
detailed derivation process, the von Neumann stability analysis
and the boundary treatment of the simplified thermal lattice
Boltzmannmethod proposed in this paper. Section 4 presents three
representative numerical examples (natural convection in a square
cavity, the natural convection in a concentric annulus and the
mixed heat transfer from a heated circular cylinder) to
validate the convergence, stability, and accuracy of the present
method, as well as its adaptability on non-uniform meshes with
curved boundaries. The numerical results are compared with
reference data in literature. Brief conclusions are finally drawn in
Section 5.

2. Macroscopic governing equations and thermal lattice
Boltzmann method

2.1. Macroscopic governing equations

For general thermal viscous flows, the macroscopic governing
equations include the following continuity, momentum and energy
equations [39]
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þr � qu ¼ 0 ð1Þ

@qu
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þr � quuð Þ ¼ �rpþ tr � rquþ rquð ÞT
h i

þ FE ð2Þ

@
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qeð Þ þ r � queð Þ ¼ vr2 qeð Þ ð3Þ

where q, u, p and t denote the density, the velocity vector, the pres-
sure and the kinematic viscosity, respectively. FE is the external
force term; v represents the thermal diffusivity; and e is the inter-
nal energy defined as e = DRT/2. D;R and T are the number of spatial
dimensions, the gas constant and the temperature, respectively. In
the present work, we set D = 2 and R = 1 to maintain consistency
with previous studies [37].

The heat transfer can be conducted through conduction, con-
vection and radiation [40]. Here, we mainly focus on the heat con-
vection process in the fluid. Forced convection and natural
convection are the two major heat convection problems. For forced
convection, the bulk motion of the fluid is driven by external
means, e.g., fans or pumps. Therefore, it is usually assumed that
the internal energy, or the temperature, has no effect on the veloc-
ity field (momentum equation). For natural convection, the motion
of the fluid is driven by the buoyancy force, which is related to the
temperature difference. Consequently, the momentum and energy
equations have to be coupled, and the velocity and the tempera-
ture affect each other.

2.2. Thermal lattice Boltzmann method

The thermal lattice Boltzmann model with BGK approximation
[28,33] can be expressed as

f a rþ eadt; t þ dtð Þ ¼ f a r; tð Þ þ f eqa r; tð Þ � f a r; tð Þ
st

; a ¼ 0;1; . . . ;M

ð4Þ

ga rþ eadt ; t þ dtð Þ ¼ ga r; tð Þ þ geq
a r; tð Þ � ga r; tð Þ

sc
; a ¼ 0;1; . . . ;N

ð5Þ
where f a and ga are the density distribution function and the inter-
nal energy distribution function along the a direction, respectively;
The superscript ‘‘eq” denotes the equilibrium state; st and sc are
single relaxation parameters related to the kinematic viscosity
and the thermal diffusivity, respectively; dt is the time step applied
in the model; M and N are the number of the lattice velocities used
in the density and the internal energy distribution functions respec-
tively. In thermal LBM, the macroscopic properties can be obtained
from the conservation laws of mass, momentum and energy:

q ¼
X
a
f a; qu ¼

X
a
f aea; qe ¼

X
a
ga ð6Þ

The thermal lattice Boltzmann method is associated with the
lattice velocity model. In the present work, the 9-bit lattice velocity
model (D2Q9) is applied (see Fig. 1) [28,41,42], which consists of
the following lattice velocity directions
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