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a b s t r a c t

Thermocapillary convection in a differentially heated bilayer annular pool consisting of 5cS silicone oil
and HT-70 is investigated by a series of three-dimensional numerical simulations. Both systems with
and without rotation are considered. The results indicate that the thermocapillary convection is steady
and axisymmetric when the Marangoni number is small. The system rotation suppresses the radial flow
in the lower layer. Once the Marangoni number exceeds a threshold value, three-dimensional oscillatory
flow occurs in both layers simultaneously. The stability diagram reveals that weak rotation destabilizes
the axisymmetric flow, while stronger rotation retards the onset of oscillatory flow. The wave patterns for
oscillatory flow appear in the form of blade-like waves propagating outward. The surface oscillation and
the interface oscillation always share a common frequency but have about a half-period phase lag. In the
rotating pool, single group of curved hydrothermal waves propagates in the azimuthal direction opposite
to the pool rotation. As the rotation rate increases, the wave number increases while the oscillation fre-
quency decreases.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Thermal convection in two-layer system is a common phe-
nomenon that is of great importance in various processes such as
earth mantle convection [1] and single crystal growth [2]. In the
process of single-crystal growth from the melt containing some
volatile components (such as GaAs, PbTe), the evaporation of more
volatile component may lead to an inhomogeneous change of com-
position and further reduce quality of the grown crystal. In order to
prevent evaporation, liquid encapsulation technique, such as Liq-
uid Encapsulated Czochralski (LEC) method [3], was developed.
In this technology, a suitable liquid encapsulant covers the melt
surface to prevent evaporation. Meanwhile, the encapsulant
unavoidably introduces a liquid–liquid interface tension between
the encapsulant and the melt. Due to the existence of a horizontal
temperature gradient in the crucible in a LEC system, thermocapil-
lary convections are generated, driven by the tension gradients on
both the encapsulant’s surface and the encapsulant-melt interface.
Physically, it is referred to as the thermocapillary convections in
two-layer system in literature [4]. If such a thermocapillary con-
vection is coupled with the crucible rotation, which is a common

approach to smoothen the non-uniform heating from the heaters
in LEC furnace, the convection would become quite complex and
influence the flow instability.

Over the past few decades, numerous experimental works and
numerical simulations [5–7] have been conducted on the thermo-
capillary convection in the LEC system or in the bilayer system. Liu
and Roux [8] performed numerical simulations to study the pure
thermocapillary convection in the system composed of two immis-
cible liquid layers with a horizontal temperature gradient. Their
results indicated that the encapsulation with high viscosity and
low thermal diffusivity may significantly reduce the convection
in the lower layer. Similar results were also reported by Gupta
et al. [9,10] through a series of numerical simulations in a differen-
tially heated rectangular cavity. Moreover, Madruga et al. [11,12]
extended investigations to the stability of thermocapillary convec-
tion in an infinite horizontal two-layer system bounded by two
solid boundaries on the top and bottom and predicted three types
of flow instabilities. Nepomnyashchy and Simanovskii [13] investi-
gated the two-layer system composed of 5cS silicone oil and HT-70
with a horizontal temperature gradient. For large values of Maran-
goni number and Grashof number, an oscillatory instability was
developed.

The effect of system rotation on thermocapillary convection in a
two-layer system was taken into account in only few published
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reports. Numerical simulations of flow field in LEC configuration by
Fontaine et al. [14] suggested that large crystal rotation rate sup-
pressed the time-dependent flow driven by buoyancy and rotation
but thermocapillary force was not taken into account in their work.
Wu and Li [15] investigated the effect of the counter rotation of
crucible and crystal in a LEC configuration when the coupled ther-
mocapillarity, centrifugal force and Coriolis force were considered
during the investigations. Their results revealed that the crystal
rotation could suppress the flow instability while the crucible rota-
tion had an opposite effect.

Although thermocapillary convection in bilayer system has
been investigated by numerous works, there is actually lack of
experimental report on the wave pattern of the oscillatory thermo-
capillary convection due to the limitation of observation method
for bilayer system. The stability analysis or two-dimensional sim-
ulation conclusion can’t be simply extrapolated into the three-
dimensional nonlinear regime [16]. The characteristics of the wave
pattern of the oscillatory thermocapillary convection in bilayer
system is thus still an open question up to now. In this work, we
have developed the computer codes for two-layer system based
on our previous version for single-layer [17] and have conducted
a series of three-dimensional simulations to investigate the charac-
teristics of the oscillatory thermocapillary convection in a two-
layer pool with and without system rotation. The critical condition
for the onset of hydrothermal waves and its patterns as well as the
mechanism which causes the flow instability have been investi-
gated carefully.

2. Models and numerical methods

2.1. Physical and mathematical models

We consider two immiscible liquids in an annular pool. The
thickness of lower layer and upper layer are h1 and h2, and the
inner and outer radius are ri and ro, respectively. The annular pool
rotates around its central axis with a constant angular velocity X.
The aspect, radius and thickness ratios are respectively defined as
A = Dr/h1(Dr = ro-ri), r⁄ = ri/ro and h⁄ = h2/h1 and we assign these
parameter values as A = 4, r⁄ = 0.5 and h⁄ = 1 in the present work.

The outer wall is maintained at a higher temperature To while
the inner wall at a lower temperature Ti. The annular pool is filled
with 5cS silicone oil as upper layer liquid and HT-70 as lower layer
liquid. Their thermophysical properties refer to Refs. [11,13]. For
concise, the liquid–liquid interface is shortly called interface and
the top free surface or liquid–gas interface is shortened to surface
hereafter. The liquids are assumed to be incompressible Newtonian
liquid with constant properties except for the temperature depen-
dence of surface tension and interface tension. Thus the Marangoni
effect acts on both the surface and interface. The rigid bottom and
the surface are considered to be adiabatic. The flow is considered to
be laminar. The surface and interface are assumed to be flat and
non-deformable.

Under the assumptions above, the mathematical model in the
absence of gravity is expressed by the following dimensionless
governing equations in a cylindrical rotational coordinate system
co-rotating with pool around the central Z axis.
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The boundary conditions are written as follows:

at the surface (ri/Dr < R < ro/Dr, Z = (h1 + h2)/Dr, 0 6 h < 2p):
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at the interface (ri/Dr < R < ro/Dr, Z = h1/Dr, 0 6 h < 2p):
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at the bottom (ri/Dr < R < ro/Dr, Z = 0, 0 6 h < 2p):

U ¼ V ¼ W ¼ 0;
@H
@Z

¼ 0; ð6a-6dÞ

at the cold inner wall (R = ri/Dr, 0 6 Z6(h1 + h2)/Dr, 0 6 h < 2p):

U ¼ V ¼ W ¼ 0; H ¼ 0; ð7a-7dÞ
at the hot outer wall (R = ro/Dr,0 6 Z 6 (h1 + h2)/Dr, 0 6 h < 2p):

U ¼ V ¼ W ¼ 0; H ¼ 1; ð8a-8dÞ
the initial conditions adopted in our simulations are
(s = 0, ri/Dr 6 R 6 ro/Dr, 0 6 Z 6 (h1 + h2)/Dr, 0 6 h < 2p):

U ¼ V ¼ W ¼ 0; H ¼ lnðr=riÞ
lnðro=riÞ ; ð9a-9dÞ

where the variables in the lower layer and upper layer are marked
by the subscript 1 and 2, respectively. The length, time, pressure
and velocity are scaled by Dr, Dr2/m1, m1l1/Dr2 and m1/Dr, respec-
tively. The reduced temperature H is defined as H = (T � Ti)/
(To � Ti) and the asterisks represent the ratios of physical property
of these two liquids, e.g., l⁄ = l2/l1, cT⁄ = cT2/cT1–2. Where m is the
kinetic viscosity; a the thermal diffusivity; k the thermal conductiv-
ity; cT1–2 and cT2 the temperature dependence of interface tension
and surface tension; ez a unit vector in positive axial direction.
The Prandtl, Marangoni and Taylor numbers in the fundamental
equations are defined based on the properties of the lower layer
as Pr = m1/a1, Ma = cT1–2(To � Ti) Dr/l1a1 and Ta =XDr 2/m1.

2.2. Numerical method for solving non-linear equations

The transient Eqs. (1)–(9) are discretized by the finite volume
method in a non-uniform staggered grid. The numerical method
is the same as that in our previous work [17]. The dimensionless
computation time step ranges from 3.75 � 10�6 to 1.25 � 10�5.
At each time step, the computation converges when the maximum
absolute dimensionless residual error of continuity equation
among all of the control volumes is less than 10�6 and the maxi-
mum relative variation of variables is less than 10�4.

The non-uniform grid of 80R � 40Z � 100h is used in the present
work. Moreover, the numerical code is verified by comparing our
result with A = 4, r⁄ = 0.99 and h⁄ = 1 to the analytical solution of
Doi and Koster [7]. The radial velocity along axial direction have
a good quantitative correspondence with the maximum deviation
of 1.2% on the surface. Thus a conclusion can be drawn that the
code is correct.

3. Results and discussion

3.1. Basic flow

When Ma is small, the thermocapillary flow is axisymmetric
and steady. Hereafter, we call this steady axisymmetric flow as
‘‘basic flow”.
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