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a b s t r a c t

In this work we analytically explore the flow and heat transfer of upper-convected Maxwell (UCM) fluid
in rotating frame. Fluid with temperature dependent thermal conductivity is considered. A non-Fourier
heat flux term, featuring the thermal relaxation effects, is employed to model heat transfer process.
Boundary layer approximations are invoked to simplify the governing system of partial differential equa-
tions which are later converted to self-similar forms via similarity transformations. Mathematical model
comprises of interesting quantities which include the rotation parameter k, Deborah number b, Prandtl
number Pr, dimensionless thermal relaxation time c and parameter e. Uniformly convergent approximate
series solutions are obtained by means of homotopy analysis method (HAM). Admissible values of the
auxiliary parameter in HAM are determined by plotting the so-called �h-curves. We noticed that hydrody-
namic boundary layer becomes thinner due to the inclusion of elastic effects. The rotation parameter k
also serves to reduce the boundary layer thickness. A comparative study of Cattaneo–Christov and
Fourier models is also presented and analyzed.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Non-Newtonian fluid mechanics has been a fascinating and
challenging subject as it covers numerous central problems from
chemical, petroleum, polymer and food processing industries.
Non-Newtonian fluid models are useful to describe the flow behav-
iors of commonly encountered fluids in nature and industry such as
polymeric liquids, biological fluids, motor oils, pastes, slurries and
many other complex mixtures. Viscoelastic fluids are special non-
Newtonian materials in which applied shear stress is a memory
function of the deformation rate. In these fluids, the deformation
rate gradually reduces when the shear stress is eliminated. This
phenomenon is known as stress relaxation. Moreover the time
taken by the fluid for partial elastic recovery upon the removal of
stress is relaxation time. One of the frequently applied viscoelastic
models is the upper-convected Maxwell model. Researchers have
given special focus towards the boundary layer flows of Maxwell
fluid in the recent past. Han et al. [1] employed the newly devel-
oped Cattaneo–Christov law to model heat transfer effects in
Navier-slip flow of Maxwell fluid. Maxwell fluid flow in rotating
frame with non-Fourier heat flux formulation was analytically

addressed by Mustafa [2]. Numerical treatment for convective flow
of Maxwell nanofluid with Brownian diffusion and thermophoresis
was made by Mustafa et al. [3]. Mixed convection in the Maxwell
fluid flow adjacent to exponentially stretching vertical surface with
magnetic field effects was examined by Kumari and Nath [4]. In this
study, equations governing the locally similar flow were treated
through Chebyshev finite difference scheme. Bhattacharyya et al.
[5] determined multiple solutions for Maxwell fluid flow due to
porous shrinking sheet using shooting method. Later, Javed and
Ghaffari [6] used parallel shooting method to analyze the oblique
stagnation-point flow of Maxwell fluid due to stretching surface.
Nandy [7] investigated the unsteady flow of Maxwell nanofluid
with Navier slip boundary condition. Hayat et al. [8] explored the
three-dimensional Maxwell fluid flow with nanoparticles utilizing
Brownian motion and thermophoresis effects. Steady flow of Max-
well fluid over permeable surface was explored by Cao et al. [9]
using collocation technique equivalent to implicit Runge–Kutta
method. Recently a variety of heat transfer problems involving
Maxwell fluid have appeared (see [10–13] and Refs. therein).

Heat conduction model developed by Fourier [14] has been
widely employed to model heat transfer processes in many practi-
cal situations. However this model suffers from a serious drawback
as it gives rise to a parabolic energy equation in temperature field
which means that transfer of heat will take place instantly once the
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temperature difference is imposed. This contradicts with the well
known ‘‘Principle of Causality”. Keeping this in view, some note-
worthy generalizations of the classical Fourier effect have been
proposed in the past. For example, the dual-phase-lag-model
[15], which accounts for thermal lagging in time or time delay,
has been widely applied for the description of micro-scale heat
transfer. In the recent past, thermomass model based on the inertia
of heat was also applied to explain the non-Fourier aspect in differ-
ent situations [16–18]. Christov [19] suggested a successful gener-
alization of Fourier law in terms of thermal relaxation effect which
is defined as time needed to develop steady-state heat transfer
once the temperature gradient is introduced. Straughan [20] inves-
tigated convection effects in the horizontal layer of incompressible
fluid over a flat plate utilizing Cattaneo–Christov heat flux. Tibullo
and Zampoli [21] proved existence and uniqueness of solutions for
equations governing heat transfer in incompressible fluids through
Cattaneo–Christov theory. Haddad [22] examined thermal instabil-
ity in Brinkman porous media considering non-Fourier heat flux.
Khan et al. [23] modeled and analyzed the exponentially stretched
flow of Maxwell fluid with thermal relaxation effects. Hayat et al.
[24] considered rotating flows of Jeffrey fluid over a porous stretch-
ing sheet considering non-Fourier heat flux theory. Salahuddin
et al. [25] also used non-Fourier heat flux law to address the
stretched flow of Williamson fluid influenced by magnetic force.
Rubab and Mustafa [26] performed an analytical treatment for
three-dimensional Maxwell fluid flow and Cattaneo–Christov heat
conduction in the existence of Lorentz force. Further attempts in
this direction were made by Shehzad et al. [27], Abbasi et al.
[28], Sui et al. [29], Li et al. [30] and Liu et al. [31].

To our knowledge, viscoelastic fluid flow in the regimes of rotat-
ing frame and variable thermal conductivity has not been explored
yet. Thus purpose of present research is three fold. Firstly, to for-
mulate the laminar flow of Maxwell fluid bounded by stretchable
surface in rotating frame of reference. Secondly, to analyze heat
transfer problem with thermal relaxation effect and temperature-
dependent thermal conductivity. Finally, to solve the governing
self-similar equations by homotopy analysis method (HAM), intro-
duced by Liao [32]. HAM is considered to be better that conven-
tional perturbation methods as well as non-perturbation
methods due to the following reasons. Different from perturbation
techniques, there is no requirement of small/large parameter in
differential system while applying the HAM. This makes HAM valid
for weakly as well as strongly non-linear problems. HAM provides
an effective way of adjusting the convergence rate of the series
solutions by means of auxiliary parameter �h. Such flexibility is
not available in other non-perturbation approaches such as Ado-
mian decomposition method (ADM), homotopy perturbation
method (HPM), variational iteration method (VIM) etc. Addition-
ally, in HAM, there is no restriction on the choice of base functions
and auxiliary linear operators. Analytical solution is always handy
for scientists and engineers as it gives solutions which are valid for
the entire domain. However the numerical methods provide solu-
tions as discrete data which is often time consuming to generate
the solution curve. Consequently, we preferred HAM here for find-
ing analytical solution of the present non-linear problem. Conver-
gence analysis is discussed and values of the auxiliary parameter in
HAM are obtained by plotting �h-curves. Influence of parameters on
the flow fields is shown graphically. Numerical computations for
the missing slopes at the wall are presented for broad range of
embedded parameters.

2. Problem formulation

Let us consider the laminar flow of an incompressible Maxwell
fluid over a stretchable surface. We choose the Cartesian coordi-

nate system such that the surface is aligned with the xy-plane
and fluid is considered in the space z P 0. The surface is assumed
to stretch in the x-direction with rate a. Moreover, the fluid rotates
continuously about the z-axis with constant angular velocity X.
Physical sketch of the problem is shown in Fig. 1. The temperature
of the sheet, denoted by Tw, is constant and assumed to be greater
than the ambient temperature T1. We take into account non-
Fourier heat conduction model, proposed by Christov [14], to
inspect the heat transfer characteristics. Thus relevant equations
embodying the Maxwell fluid flow in rotating frame are presented
below:

r � V ¼ 0; ð1Þ

q½ðV � rÞV þ ðX� ðX� rÞÞ þ ð2X� VÞ� ¼ �rpþr � S; ð2Þ
where q is the fluid density, p the pressure and X ¼ ½0;0;X� the
angular velocity. The term ð2X� VÞ is the Coriolis acceleration
while the term ðX� ðX� rÞÞ ¼ �rðX2r2=2Þ represents the centrifu-
gal acceleration which is being balanced by the pressure gradient
�rp. The extra stress tensor S for upper-convected Maxwell fluid
obeys the following relation:

1þ k1
D
Dt

� �
S ¼ lA1; ð3Þ

where k1 is the fluid relaxation time, A1 ¼ ðrVÞ þ ðrVÞt the first
Rivlin–Ericksen tensor and D

Dt the upper-convected time derivative.
For a second rank tensor S and a vector a, we have the following:

DS
Dt

¼ @S
@t

þ ðV � rÞS� LS� SLt; ð4Þ

Da
Dt

¼ @a
@t

þ ðV � rÞa� La: ð5Þ

Now assigning the operator 1þ k1 D
Dt

� �
to Eq. (2) and then using

Eqs. (4) and (5), the component forms of the resulting equation
after using boundary layer approximations are obtained as follows:
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Fig. 1. Physical configuration and coordinate system.
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