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a b s t r a c t

The conventional SIMPLE algorithm for the pressure–velocity coupling has been adopted by many com-
mercial and non-commercial CFD codes. It encounters convergence problem when it is used to solve
unsteady natural convection flows with zero-isothermal compressibility. In this paper, a modified version
of this algorithm is proposed to remedy this drawback. The modification includes updating of the density
at each time step based on its value at the previous time step to satisfy the continuity equation. As an
example of utilizing the modified SIMPLE algorithm, the unsteady natural convection in a rectangular
cavity with isothermal vertical walls and adiabatic horizontal walls was computed. Physically consistent
results were obtained.

� 2016 Published by Elsevier Ltd.

1. Introduction

The SIMPLE algorithm [1] for the pressure–velocity coupling has
been adopted bymany commercial and non-commercial CFD codes
such as FLUENT, Star-CD, Phoenix, OpenForm, etc. Both steady and
unsteady natural convection in a cavity are solved by this algo-
rithm by using the Boussinesq approximation. This approximation
ignores the density changes except for the density that appears in
the buoyancy term. It also assumes the density has a linear depen-
dence on temperature. Therefore, Boussinesq approximation is not
suitable for simulation of natural convection problems with large
temperature changes [2,3] and also large density changes that exist
in super critical fluids near pseudo-critical points. Recently, there
has been renewed interest in applications which require precise
solutions of natural convection in fluids with large variations in
density. A numerical simulation using a non-Boussinesq approxi-
mation is required where the variable density in all the terms must
be considered. There is no difficulty in taking into account the vari-
ations in density in the buoyancy term instead of using the
assumption of the linear dependence on temperature. However,
if the variable density is taken into account in all the terms, the
SIMPLE algorithm encounters a convergence problem when it is
used to solve unsteady forced convection problems. Matsushita
[4] proposed a modification of the outflow boundary condition

for an unsteady forced convection in a duct. The treatment of the
outflow boundary is modified for the variable density. However,
a careful search of the literature failed to disclose any prior work
on a natural convection with variable density in a cavity.

This study deals with the modification of SIMPLE algorithm for
natural convection for an idealized fluid in a cavity with non-zero
isobaric compressibility (coefficient of thermal expansion),
�ð@q=@TÞp=q, but with zero-isothermal compressibility,
ð@q=@pÞT=q:

The ratio of isothermal to isobaric compressibility for an ideal
gas can be expressed as T=p. This ratio is about 0.003 under atmo-
spheric pressure and temperature conditions (105 Pa and 300 K).
For water, this ratio is about 1.6 � 10�6 [5]. However, for super
critical water it is about 3 � 10�6 and is about 6 � 10�6 for carbon
dioxide near the pseudo-critical point [5]. Therefore, zero-
isothermal compressibility can be assumed under these conditions.

2. An example problem using SIMPLE algorithm

To demonstrate the convergence problem of SIMPLE algorithm,
consider an unsteady natural convection in a rectangular cavity
with vertical isothermal walls and horizontal adiabatic walls as
shown in Fig. 1. All the temperatures are maintained at TC in the
initial state. There is no driving force acting on the fluid and there-
fore the fluid is assumed to be initially stationary. At t = 0, the tem-
perature of the left vertical wall (hot wall) is suddenly raised to TH
from TC in a stepwise fashion.
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2.1. Governing equations

The flow in the rectangular cavity is assumed to be two-
dimensional. It is further assumed that all the fluid properties
except the density are constant and also the fluid density is only
a function of temperature as

q ¼ const:
T

ð1Þ

The density at a reference temperature, Tref, is denoted by qref

and the density ratio is expressed as q=qref ¼ Tref =T. The density
ratio, q=q300 is plotted as a function of T for Tref ¼ 300 K in
Fig. 2. The variations of the density ratio of water and super critical

carbon dioxide at 8 MPa are also plotted in this figure as a refer-
ence. As can be seen in this figure, the density change of super crit-
ical carbon dioxide near the pseudo-critical point is large.

Under these assumptions, the variable density needs to be
taken into account for all the terms and the continuity and the
momentum equations can be expressed as:
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Nomenclature

a coefficient of discretization equation
b source term of discretization equation
Cp specific heat (W/(kg K))
Ga Galilei number (–)
H height of cavity (m)
L width of cavity (m)
p pressure (Pa)
P dimensionless pressure (–)
Pr Prandtl number (–)
RC normalized residual of continuity equation
RU, RV normalized residual of U and V
Smax maximum of rate of mass imbalance in each control

volume
Ssum rate of mass imbalance in cavity
t time (s)
u, v velocity components (m/s)
U, V dimensionless velocity components (–)
V volume integral (m3)
x, y coordinates (m)
X, Y dimensionless coordinates (–)

Greek
b volume expansivity (1/K)
/ dependent variable
k thermal conductivity (W/(m K))
l viscosity (Pa s)
m kinetic viscosity (m2/s)
h dimensionless temperature (–)
q density (kg/m3)
q⁄ dimensionless density (–)
s dimensionless time (–)

Subscript
C cold wall
e, w, n, s control-volume faces
H hot wall
nb neighbor-point
P central grid point
ref reference

Fig. 1. Natural convection in a rectangular cavity.

Fig. 2. q=q300 as a function of T.

178 Y. Asako, M. Faghri / International Journal of Heat and Mass Transfer 106 (2017) 177–182



Download English Version:

https://daneshyari.com/en/article/4994761

Download Persian Version:

https://daneshyari.com/article/4994761

Daneshyari.com

https://daneshyari.com/en/article/4994761
https://daneshyari.com/article/4994761
https://daneshyari.com

