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a b s t r a c t

The present article addresses the stagnation point flow of Jeffrey liquid towards a stretching cylinder.
Heat transfer is analyzed in view of non-Fourier heat flux and thermal stratification. Expression of heat
flux is based upon Cattaneo–Christov theory. Cattaneo–Christov heat flux model is utilized for the devel-
opment of energy equation. Such consideration accounts the contribution by thermal relaxation. The ser-
ies solutions for resulting flow and heat transfer problems have been computed. Interval of convergence
for the obtained series solutions is explicitly determined. Physical quantities of interest have been exam-
ined for the influential variables entering into the problems. It is observed that velocity profile shows
decreasing behavior for larger Deborah number. Further that temperature distribution decreases for lar-
ger values of thermally stratification and thermal relaxation parameters.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Heat transfer mostly in the past has been addressed using
classical Fourier’s law of heat conduction [1]. Energy equation via
Fourier’s law is parabolic. It shows that the whole system is
instantly affected by the initial disturbance. This issue has been
controlled through the thermal relaxation time in the Fourier’s
law (see Cattaneo [2]). Energy equation subject to Cattaneo–
Christov heat flux yields hyperbolic partial differential equation
[3,4]. Christov [5] improved the analysis of Cattaneo [2] by
introducing thermal relaxation time and using Oldroyd’s upper-
convected derivatives for the material-invariant formulation. Han
et al. [6] studied Cattaneo–Christov heat flux in the stretched flow
of Maxwell fluid over a surface with constant thickness. Thermal
conductivity of liquid is assumed constant. Straughan [7] utilized
Cattaneo–Christov model for thermal convection in an incompress-
ible flow of viscous fluid. Structural stability and uniqueness of the
Cattaneo–Christov equations are also discussed by Ciarletta and
Straughan [8]. Hayat et al. [9] employed Cattaneo–Christov heat
flux in MHD flow of an Oldroyd-B fluid over a stretching surface
with homogeneous/heterogenous reactions. Hayat et al. [10] also
explored the impact of Cattaneo–Christov heat flux in the stretched

flow over a variable thick surface. Mustafa et al. [11] analyzed
rotating flow of magnetite-water nanofluid by a stretched sheet
inspired by non-linear thermal radiation. Waqas et al. [12] studied
Burgers fluid flow with Cattaneo–Christov heat flux in the presence
of variable thermal conductivity. Three dimensional flow of Max-
well fluid with Cattaneo–Christov heat flux model is analyzed by
Abbasi and Shehzad [13]. Hayat et al. [14] investigated Jeffrey fluid
flow with Cattaneo–Christov heat flux due to variable thicked sur-
face. Li et al. [15] analyzed heat transfer in MHD viscoelastic flow
with Cattaneo–Christov heat flux model. Hayat et al. [16]
examined stagnation point flow of Maxwell fluid with Cattaneo–
Christov heat flux and homogeneous-heterogeneous reaction.
Anomalous convection diffusion with Cattaneo–Christov heat flux
due to coupling transport of cells is examined by Liu et al. [17].
Reddy et al. [18] considered three different geometries to analyze
Cattaneo–Christov heat flux in presence of cross diffusion effects.
Hayat et al. [19] examined two-dimensional stratified flow of
Eyring-Powell fluid with Cattaneo–Christov heat flux. Impact of
Cattaneo–Christov heat flux is addressed by Tanveer et al. [20].
Nadeem and Muhammad [21] reported stratified flow of Maxwell
fluid utilizing Cattaneo–Christov heat flux theory.

The flow of nonlinear fluids has gained significant importance
owing to its several applications in the fields of applied science
and engineering. The traditional Navier–Stokes equation is not
adequate to predict the characteristics of such flows. In general
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mathematical formulation for these fluids is complicated. Such liq-
uids cannot be described through linear relationship between rate
of strain and shear stress. The non-linear fluids are encountered in
the chemical and petroleum procedures and geophysics. Materials
for example boring muds, fruit purée, foams, soaps, sugar arrange-
ment glues, certain oils, ketchup, lubricants, dirt covering, suspen-
sion arrangements and colloidal behave like the non-Newtonian
fluids. Such fluids can be into the differential, integral and rate
types. Relaxation and retardation times can be explained only
through rate type materials. Jeffrey fluid is one of the subclasses
of rate type materials explaining the relaxation and retardation
times effects. Having this in mind, Hayat et al. [22] studied flow
of Jeffrey fluid in the presence of radiation, heat source and porous
medium. Hussain et al. [23] studied radiative hydromagnetic flow
of Jeffrey nanofluid by an exponentially stretched surface. Farooq
et al. [24] considered MHD flow of Jeffrey liquid in presence of
Newtonian heating. Hayat et al. [25] described MHD stagnation
point flow of Jeffrey nanofluid by taking into account Newtonian
heating. Hamad et al. [26] investigated boundary layer stagnation
point flow of variable thermal conductivity Jeffrey fluid over a
stretching/shrinking surface. Hayat et al. [27] considered flow of
Jeffrey fluid subject to Cattaneo–Christov heat flux and homoge-
neous/heterogeneous reaction. Tripathi et al. [28] discussed the
MHD peristaltic flow of Jeffrey liquid in a cylindrical tube of finite
length. Yasmeen et al. [29] investigated ferrofluid flow by a
stretched surface in the presence of magnetic dipole and
homogeneous-heterogeneous reactions. Reddy et al. [30] exam-
ined flow of Jeffrey fluid between torsionally oscillating disks.

Flow characteristics in the neighborhood of stagnation point is
still a topic of hot interest for the recent scientists and researchers.
Such interest mainly is due to its prominent demands in the indus-
trial and engineering process. Stagnation point has significant role
in flow of ground water since several streamlines advancing
through them portray diverse flow regions. Hiemenz [31] initially
reported the steady flow in the vicinity of stagnation point. Hayat
et al. [32] explored convective flow of Maxwell liquid in the pres-
ence of thermal radiation and mixed convection. Stagnation point
flow of hydromagnetic viscous liquid in presence of slip condition
and homogeneous/heterogeneous reaction is studied by Abbas
et al. [33]. Malvandi et al. [34] explored partial slip effect in the
time-dependent stagnation point flow of viscous nanofluid. Impact
of convective heat transfer in MHD flow of Jeffrey liquid towards a
stretched surface is reported by Hayat et al. [35]. Joule heating
effect in stagnation point flow by a cylinder is analyzed by Nawaz
et al. [36].

Here we consider the impact of Cattaneo–Christov heat flux
model in stagnation point flow of Jeffrey fluid. The flow is caused

by a stretching cylinder. Further effect of thermal stratification is
studied. Homptopic procedure [37–50] is utilized for the solutions
of arising nonlinear differential systems. Results are discussed
graphically for different sundry variables.

2. Formulation

2.1. Flow equations

Consider the stagnation point flow of non-Newtonian liquid
towards a horizontal stretched cylinder. The cylinder is stretched
with velocity Uw xð Þ ¼ U0 x=lð Þ. We consider here the following
assumptions.

(1) Two-dimensional flow:
(2) Jeffrey fluid model.
(3) Incompressible fluid.
(4) Thermal stratification.
(5) Cattaneo–Christov heat flux consideration.

The governing flow equations are
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subject to the appropriate boundary conditions

u ¼ Uw xð Þ ¼ U0x
l

;v ¼ 0; at r ¼ a; ð3Þ

u ! Ue xð Þ ¼ U1x
l

when r ! 1: ð4Þ

In the above-mentioned expressions u and v are the velocity
components parallel to the x and r directions respectively, q the
density of fluid, m the kinematic viscosity, Ue xð Þ the free stream
velocity, a the radius of cylinder and l the characteristics length.
Using transformations
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Nomenclature

u; v velocity components
a curvature parameter
Ue free stream velocity
k1 ratio of relaxation to retardation
k2 retardation time
k3 thermal relaxation time
U0 stretching velocity
q density
t kinematic viscosity
Tw; T1 fluid and ambient temperature
r radius of cylinder
Cf skin friction coefficient
Rex Reynold number
S thermal stratification

b Deborah number
A ratio parameter
cp specific heat
T temperature
q heat flux
k thermal conductivity
a� thermal diffusivity
l characteristics length
c;d dimensional constant
Pr Prandtl number
sw wall shear stress
c thermal relaxation parameter
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