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a b s t r a c t

A new mesoscopic scale Parallel Non-Dimensional Lattice Boltzmann Method (P-NDLBM) is developed to
dramatically speed up the computation of transient fluid flow and heat transfer problems. The P-NDLBM
code using message passing interface (MPI) was compiled in Fortran. The model is presented in dimen-
sionless form to simplify application to a broad range of problems. The effective domain decomposition,
data transfer between CPUs, and various boundary conditions based on the P-NDLBM are presented. The
code is validated by comparison to prior experimental and single CPU computational studies of cavity
flow and the Rayleigh–Bénard problem. The time costs of simulations with equal mesh size are compared
for CPU numbers from 1 to 64 to show the effectiveness of the approach. To illustrate the utility of the
code, simulations of the transient temperature and fluid velocity during charging and discharging of
an integral collector storage solar system are presented. The modeled system has encapsulated phase
change embedded in the water-filled enclosure. The results illustrate the capability of the code to capture
the phase transition within the encapsulated phase change material as well as the details of the overall
flow structure and temperature field.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The lattice Boltzmann numerical method (LBM) provides the
benefit of faster computational speed for prediction of fluid flow
and heat transfer in numerous situations where finite difference,
finite element, and control volume methods are slow [1–7]. One
such example is for transient problems involving phase change.
The early LBM models of phase change had two limitations. The
moving interface between solid and liquid was treated as an infi-
nitely thin boundary [8–10], which does not capture the true nat-
ure of a mixture of solid and liquid phases at the melt interface.
Also the early models assumed the major heat flux direction
required to calculate the transient boundary positions, which are
not exactly on the nodes, was known apriori. To eliminate these
limitations, Su and Davidson developed a single CPU based non-
dimensional lattice Boltzmann method (NDLBM) for melting and
solidification heat transfer and introduced the concept of porosity
to describe the transient fluid component ratio in each mesoscopic
element [11]. The porosity in the mixture zone varies from 1 to 0 to
represent the changing character of the mixture of fluid and solid
in the phase change material (PCM) [11]. With this approach the

solid–liquid interface is treated as a dynamic zone instead of an
ideal infinite thin layer, and it is possible to simulate natural con-
vection with macroscopic Rayleigh numbers up to 1011 in reason-
able computational time [11,12].

However, for many complex problems, larger grid numbers are
required to accurately capture the flow and temperature fields in
large multiscale domains. An example of such a domain is shown
in Fig. 1. The system depicted is a combined solar collector and
storage tank, referred to as an integral collector storage (ICS). The
inclined ICS is filled with fluid in which tubes filled with PCM are
immersed. Heating/charging of the ICS is via natural convection
as solar radiation strikes the front surface. Cooling/discharging of
the stored solar energy is via forced convection as cooler fluid
introduced at the bottom of the enclosure flows over the PCM-
filled tubes and pushes warmer fluid out the top to the user.

Pioneering studies on parallel computation with LBM or LBM
combined with other methods such as finite element method show
that LBM has inherent advantages for parallel computations [13–
17]. Previous parallel LBM simulations were based on physical
dimensional units and the papers describing these models did
not provide details of the data transfer between CPUs. In the pre-
sent study, an effective numerical scheme for Parallel Non-
Dimensional Lattice Boltzmann Method (P-NDLBM) is developed
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in dimensionless form which facilitates application to a broad
range of problems. The effective domain decomposition, data
transfer between CPUs, and various boundary conditions based
on the P-NDLBM are presented. The model is validated by compar-
ison to well documented cases of cavity flow [18] and the Ray-
leigh–Bénard natural convection problem in a square enclosure
[19]. To illustrate the P-NDLBM code, a case study of the transient
temperature and velocity fluid during charging and discharging of
the ICS of Fig. 1 is presented.

2. Numerical method

The P-NDLBM builds on the theoretical base of the NDLBM [11],
described in Sections 2.1 and 2.2 with sufficient detail to under-
stand the parallel scheme described in Section 2.3.

2.1. Dimensionless mesoscospic equations and governing parameters

The domain is treated as a porous medium where at each loca-
tion and the time, porosity / is defined as the fraction of the vol-
ume of the fluid phase,

/ ¼ Vf

Vs þ Vf
: ð1Þ

Because of the small range of temperature differences in the
mixture of solid and fluid during phase change, the local thermal
equilibrium assumption for porous medium is justified at the mesh

size level. We use the mesoscopic length scale, ‘ ¼ Dx ¼ Dy, meso-
scopic velocity scale c ¼ cs=c�s (cs is the mesoscopic sound speed,
and c�s is the dimensionless mesoscopic sound speed), and meso-
scopic time scale Dt ¼ ‘=c. With these scales the mesoscopic
dimensionless momentum and energy equations are,

@�v�

@�t�
þ r� � v�v�ð Þ ¼ �r�p�

f þ
1

Rec;‘
r�2v� þ F�

c;‘; ð2Þ

and

@�T�

@�t�
þ r� � /v�T�ð Þ ¼ 1

Pec;‘
r�2T� þ Q �

c;‘: ð3Þ

The mesoscopic dimensionless governing parameters based on
the mesoscopic velocity scale c and the mesoscopic length scale
‘, are

Rec;‘ ¼ c ‘
mf

¼ ReU;‘
c�sMa‘

; ð4Þ

Pec;‘ ¼ PeU;‘
c�sMa‘

¼ ReU;‘
c�sMa‘

Prm; ð5Þ

where Ma‘ is the mesoscopic Mach number defined as,

Ma‘ ¼ U
cs

¼ U
c�s c

; ð6Þ

and

Nomenclature

cp specific heat capacity, J/kg-K
cs lattice speed of sound, m/s
c mesoscopic velocity scale, m/s
c mesoscopic velocity vector, m/s
eg the unit vector in the gravity direction
ev the unit vector in the velocity direction
f density distribution function, kg/m3

F force term, N/m3

g temperature distribution function, K
g gravity acceleration, m/s2

k thermal conductivity, W/mK
L macrosocpic length scale, m
Lf latent heat per unit mass, J/kg
H height of the enclosure, m
Ma Mach number
Nu Nusselt number
p pressure, N/m2

Pe Peclet number
Pr Prandtl number
Q heat source, W/m3

Ra Rayleigh number
Re Reynolds number
Ri Richardson number
Ste Stefan number
t time, s
T temperature, K
v velocity vector, m/s
U macroscopic velocity scale, m/s
w weighting factor
x; y coordinates

Greek symbols
DT temperature scale, K
Dt time scale, s

Dx;Dy lattice size in x; y direction, m
a thermal diffusivity, m2/s
b thermal expansion coefficient
f dimensionless equilibrium function
m kinematic viscosity, m2/s
q density, kg/m3

s relaxation time, s
/ porosity
Xp subdomain index
‘ mesoscopic length scale, m

Subscripts
eq equilibrium state
f fluid
in inlet
high higher value
k the index of the 9 directions
m mixture of solid and liquid
od opposite direction
‘ mesoscopic length scale
low lower value
L macroscopic length scale
PCM phase change material
ref reference
s solid
w wall
0 initial time value

Superscripts
– space averaged value
⁄ dimensionless variables
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