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a b s t r a c t 

The results of detailed, three-dimensional numerical simulations of fixed spherical drops in a uniform 

flow are presented. The fluid dynamics outside and inside of the drops as well as the internal problem 

of mass (or heat) transfer are studied. Liquid drops in both a liquid and a gaseous ambient phase are 

considered. Special emphasis is put on the investigation of different modes of internal circulation. 

At low Reynolds numbers of the inner fluid, the flow field inside the drop resembles the well known 

Hill’s vortex solution. However, at higher internal Reynolds numbers, stable steady or quasi-steady al- 

ternative modes of internal circulation are found. As these modes are not cylindrical symmetric around 

the streamwise axis, the often applied assumption of a two-dimensional, axisymmetric flow field is not 

justified in these cases. Thus, major discrepancies to previous numerical studies are obtained. However, 

it is shown that experimental results support our findings. 

For liquid drops surrounded by a liquid, a major influence of the state of internal circulation on the drag 

is discovered, whereas the drag is nearly unaltered in the case of a liquid drop in gas. 

Concerning the internal problem of mass/heat transfer, the various internal flow modes show differ- 

ent characteristics. At low internal Peclet numbers, higher Sherwood numbers are reached for the Hill’s 

vortex-like cases, whereas at higher Peclet numbers, the transfer is faster for the alternative modes. For 

cases with a Hill’s vortex-like solution, asymptotic Sherwood numbers for very high Peclet numbers of 

around 20 are found, whereas no upper limit for cases with alternative modes can be determined. In 

the present study a maximum internal Sherwood number of 130 is reached, more than six times the 

maximum value for a case with a Hill’s vortex-like internal solution. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Drops have been studied for a long time in various areas and 

a vast amount of literature on this topic exists. An introduc- 

tion as well as a review of work until 1978 can be found in 

the book by Clift et al. (1978) . Wegener et al. (2014) present a 

more recent review covering the fluid dynamics and the mass 

transfer of drops in liquid–liquid systems. Concerning the present 

study, the literature can be divided into two parts. First, stud- 

ies of the internal motion and its influence on drag, and sec- 

ond studies of the internal problem of heat/mass transfer. As the 

early theoretical and experimental work is reviewed in Clift et al. 

(1978) and the internal droplet motion is hardly accessible by ex- 

periments, mainly numerical studies are cited. However, one exper- 

imental investigation should be mentioned, which is the work by 
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Thorsen et al. (1968) who studied the terminal velocity of liquid 

drops falling through water. They found that for some substances 

a sudden increase of terminal velocity occurs at a certain drop di- 

ameter and attributed this phenomena to “different states or levels 

of internal circulation”. 

Early numerical works covering the motion inside drops include 

the investigation by LeClair et al. (1972) who were the first to 

numerically study a water drop in air, Abdel-Alim and Hamielec 

(1975) who studied liquid drops in a liquid, and Rivkind and Ryskin 

(1976) who considered arbitrary ratios of inner to outer viscos- 

ity ( λ) and outer Reynolds numbers of up to Re = 200 . Oliver and 

Chung (1987) verified the early numerical results and studied the 

fluid mechanics in more detail. Feng and Michaelides (2001) used a 

method to highly resolve the boundary layer outside of the sphere 

and simulated cases for viscosity ratios between 0 and ∞ and 

Re < 10 0 0 . In all above mentioned studies, two-dimensional, ax- 

isymmetric simulations were performed. It was found that the in- 

ternal motion is rather insensitive to the internal Reynolds number 
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List of symbols 

Latin letters 

C D drag coefficient 

C L lift coefficient 

c concentration 

˜ c volume averaged concentration 

d diameter of the drop (sphere) 

D diffusion coefficient 

f frequency 

F D drag force 

F L lift force 

˙ m 

′ normalized mass (heat) flux 

Nu Nusselt number 

p pressure 

Pe Peclet number 

Pr Prandtl number 

Re outer Reynolds number Re = 

U o dρo 
μo 

Re i inner Reynolds number Re i = 

U i dρi 
μi 

Sh Sherwood number 

St Strouhal number St = 

f d 
U o 

t time 

t ′ nondimensional time (Fourier number) t ′ = 4 Dt 
d 2 

U absolute velocity of the fluid 

U i governing inner velocity (maximum absolute veloc- 

ity inside the drop) 

U o governing outer velocity (inflow velocity) 

v velocity vector 

Greek letters 

ρ density 

μ viscosity 

λ viscosity ratio inner to outer fluid 

κ density ratio inner to outer fluid 

Subscripts 

cf creeping flow 

f friction (viscous) component 

i inside the drop 

o outside the drop 

p pressure (form) component 

Symbols 

˜ averaged quantity 

∞ asymptotic value in the limit t → ∞ 

Re i and resembles in many cases a Hill’s vortex ( Hill, 1894 ). For 

certain cases, e.g. a water drop in air at Re = 300 , a secondary cir- 

cular internal motion emerges in the rear part. Furthermore, Feng 

and Michaelides (2001) stated that the density ratio ( κ) of inner 

to outer density has nearly no influence on drag. Sugioka and Ko- 

mori (2007) simulated water drops in air with three-dimensional 

simulations. At Re = 300 , they found that even for a uniform air 

flow, the outer as well as the inner flow field are not axisymmet- 

ric. They showed that the secondary internal motion, described by 

LeClair et al. (1972) , is only possible because they assume axisym- 

metry and is nonexistent if simulated with a full three-dimensional 

method. Engberg and Kenig (2015) numerically investigated the 

observation made by Wegener et al. (2010) that in their experi- 

ments, in some cases, two different rise velocities were found for 

the same drop diameter. Even though their main objective was 

the deformation of the drops, they found a non-axisymmetric so- 

lution for nearly spherical drops and drew the conclusion that 

“the widely-used assumption of axial symmetry has to be carefully 

checked”. 

As we are mainly interested in the phenomena inside the drop, 

only the internal problem of heat/mass transfer will be discussed. 

The internal problem is of importance if the main transfer resis- 

tance is located inside the drop. The heat/mass transfer inside the 

drop is characterized using the internal Nusselt (heat transfer) or 

Sherwood (mass transfer) number, denoted by Nu and Sh , respec- 

tively. As these numbers are used analogously, only the Sherwood 

number is used in the following. 

For the case of pure diffusion inside the drop, Newman 

(1931) derived an analytical solution and obtained an asymptotic 

value for t → ∞ : Sh ∞ 

(Pe = 0) ≈ 6 . 58 , with Pe denoting the Peclet 

number. Kronig and Brink (1951) assumed creeping flow and very 

large Peclet numbers inside the drop and thus obtained a solution 

for Re → 0 and Pe → ∞ , which leads to the result Sh ∞ 

( Re → 0, 

Pe → ∞ ) ≈ 17.9. This result can be interpreted as the fact that the 

“overall heat and mass transfer rate between the droplet interior 

and the surface is 2.72 times higher than in the case of the solid 

sphere” ( Abramzon and Sirignano, 1989 ). This approach is called 

the “effective conductivity model”, and mainly concerns the find- 

ing of the factor χ by which the sphere thermal conductivity is 

increased (see Jin and Borman, 1985; Talley and Yao, 1988 ), usu- 

ally ranging from χ = 1 ( Sh = 6 . 58 ) to χ = 2 . 72 ( Sh = 17 . 9 ). How- 

ever, only creeping flow is assumed in the aforementioned stud- 

ies. Handlos and Baron (1957) assumed that the streamlines in- 

side the drop can be approximated using the Hill’s vortex solu- 

tion but superimposed turbulent fluctuations, as they considered 

very high Reynolds numbers. As a result, they obtained a linear 

relationship of the Sherwood number as a function of the Peclet 

number. More recently, Paschedag et al. (2005) studied the in- 

fluence of changes in material properties and operating condi- 

tions on the mass transfer and found only small influence of the 

Reynolds number on mass transfer. Juncu (2010) studied the in- 

fluence of very high Peclet and moderately high Reynolds num- 

bers on the transfer and stated that Sh ∞ 

( Re i , Pe → ∞ ) increases 

with increasing inner Reynolds number. Their highest result ob- 

tained was for a liquid drop with λ = 100 , κ = 10 0 0 , yielding 

Sh ∞ 

(Re i = 10 0 0 , Pe = 10 0 , 0 0 0) = 19 . 85 1 , and exceeding the results 

from Kronig and Brink (1951) by only approximately 10%. Colombet 

et al. (2013) studied spherical gas bubbles at moderate Reynolds 

numbers. They found that the maximum tangential velocity at the 

bubble surface is the governing parameter for the description of 

the transfer and were able to show that all results collapse on a 

single curve if a appropriately normalized asymptotic Sherwood 

number is plotted as a function of maximum Peclet number Pe max . 

For the present study, three-dimensional numerical simula- 

tions of fixed spherical drops were performed with the well val- 

idated finite-volume code THETA (see e.g. Knopp et al., 2010 ). 

The main purpose of the this paper is to show that for physical 

relevant parameters, solutions inside spherical liquid drops exist, 

which do not resemble a Hill’s vortex. In particular, it presents 

in which cases this may occur and how the drag and the in- 

ternal heat/mass transfer are influenced. The paper is structured 

as follows. Section 2 covers the used model and the governing 

equations, whereas Section 3 describes the numerical method. In 

Section 4 , the basic validation and the mesh quality are discussed, 

followed by the main part ( Section 5 ), covering the results and the 

discussion. The conclusions can be found in Section 6 . 

2. Model and governing equations 

We consider a fixed spherical drop with diameter d , placed 

in a uniform flow with inflow velocity U o . The flow fields inside 

and outside the drop are governed by the unsteady incompressible 

1 Note that they use a different definition for Re i with Re i = Re · κ/λ. 
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