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a b s t r a c t 

The possibility of predicting the exact long wave linear stability boundary via the two-fluid (TF) model for 

horizontal and inclined stratified two-phase flow is examined. The application of the TF model requires 

the introduction of empirical closure relations for the velocity profile shape factors and for the wave 

induced wall and interfacial shear stresses. The latter are recognized as the problematic closure laws. In 

order to explore the closure relations effects and to suggest the necessary modifications that can improve 

the stability predictions of the TF model, the results are compared with the exact long wave solution of 

the Orr–Sommerfeld equations for the two-plate geometry. It is demonstrated that with the shape factors 

corrections and the inclusion of wave induced stresses effects, the TF model is able to fully reproduce the 

exact long wave neutral stability curves. The wave induced shear stresses in phase with the wave slope, 

which give rise to the so called “sheltering force”, were found to have a remarkable destabilizing effect 

in many cases of horizontal and inclined flows. In such cases, the sheltering effects must be included in 

the TF model, otherwise the region of smooth stratified flow would be significantly over predicted. Based 

on the results of the exact analysis, a simple closure relation for the sheltering term in the TF model is 

provided. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Stratified flow is a basic two-phase flow pattern where a con- 

tinuous layer of a light phase flows on top of a heavier phase. Var- 

ious important chemical and industrial processes, frequently en- 

counter horizontal and inclined gas–liquid and liquid–liquid strati- 

fied two-phase flows. Under certain operating conditions however, 

interfacial instabilities can arise and may produce undesired effects 

and trigger flow pattern transition. The exploration of the interface 

stability is therefore of practical importance. Additionally, it may 

also rule out the feasibility of part of the solutions in the multiple 

holdup solution regions that characterize inclined stratified flows. 

Exact solutions for steady laminar stratified flow in inclined 

pipes are available in the literature (e.g. Ullmann et al., 2004 ; 

Goldstien et al., 2015 ). However, exact formulation of transient 

stratified flow in pipe geometry is too complicated for conduct- 

ing a rigorous stability analysis. A widely used approach to study 

the flow stability is to perform a stability analysis on the simpli- 

fied one dimensional transient two-fluid (TF) model, where long- 
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wave is an inherent assumption (e.g., Lin and Hanratty, 1986; An- 

dritsos et al., 1989; Barnea and Taitel, 1994; Brauner and Moalem 

Maron, 1992a ). Since the velocity profiles are not resolved in the 

framework of TF analysis, the application of the TF model requires 

the introduction of empirical closure relations. These are needed 

for the velocity profile shape factors (to represent correctly the in- 

ertia terms) and for the wall and interfacial shear stresses (e.g., 

Brauner and Moalem Maron, 1993 ). The models adopted for clo- 

sure ought to bridge the gap between the details of the pertinent 

hydrodynamic phenomena and the macro-averaged representation 

of the flow. To circumvent the problem, plug flow has been com- 

monly assumed (shape factors of 1). For the wall and interfacial 

shear stresses, the simplest and most common approach is to use 

quasi-steady shear stress models (e.g., Brauner and Moalem Maron, 

1992b ; Barena and Taitel, 1994 ). Consequently, in the stability anal- 

ysis only the components of the stresses in phase with the wave 

height are considered, in accordance with the K-H mechanism. In- 

deed, in the literature of gas–liquid and liquid–liquid flows, the in- 

stability of the stratified flow pattern is commonly associated with 

the Kelvin-Helmholtz (K-H) mechanism. This mechanism attributes 

the growth of interfacial disturbances to the inertia forces, which 
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give rise to wave induced pressure fluctuations in phase with the 

wave height. 

The ability of the averaged TF model to predict macroscopic be- 

havior is however largely dependent on a successful representa- 

tion of the interactions between the basic flow and the wave in- 

duced hydrodynamics by the closure laws used. The introduction 

of simplistic empirical closure relations may lead to inherent in- 

accuracies in the TF model predictions. It has long been recog- 

nized that a reasonable prediction of the smooth-stratified flow 

boundary in gas–liquid flows requires incorporation of an interfa- 

cial shear stress term in phase with the wave slope (see reviews 

by Hanratty (1991 ) and Brauner and Moalem Maron (1996 )). The 

origin of this term was attributed to the Jeffreys (1925), Benjamin 

(1959) and Miles–Phillips mechanisms (e.g., Miles, 1959, 1962 ) for 

wind generated waves. According to those mechanisms, wind-wave 

interactions result in an interfacial stress component in phase with 

the wave slope, which is essential to enable energy transfer from 

the wind to the wave. Waves grow when the energy input from 

the wind exceeds the viscous dissipation in the waves. In Jeffreys’ 

criterion for instability, the resulting critical gas velocity is propor- 

tional to the liquid viscosity, and an empirical sheltering coeffi- 

cient was introduced, which was tuned to fit data of the critical 

wind velocity. This criterion was applied to predict the stratified- 

smooth/stratified-wavy (SS/SW) transition in horizontal gas–liquid 

pipe flows (e.g., Taitel and Dukler, 1976; Andritsos et al., 1987 ). 

Upon including a shear stress component in phase with the wave 

slope in the TF closure relation for the interfacial shear, a general- 

ized stability criterion was obtained ( Brauner and Moalem-Maron, 

1993 , 1994 ). The resulting criterion combines the so-called ‘viscid 

K-H’ mechanism (due to the inertia terms of both of the phases) 

and the so- called ‘sheltering’ mechanism. Accordingly, both mech- 

anisms can have a role in determining the critical conditions for 

the SS/SW transition and should be considered (e.g., Lopez de 

Bertodano et al., 2013 ). 

Recently, it has been shown by Kushnir et al. (2014) that the 

interaction between the wave and the flow field in the two layers 

gives rise to wave induced stresses in phase with the wave slope. 

Expressions for such stresses were derived, for a two-plate geom- 

etry and long wave disturbances showing that they should not be 

ignored in the framework of long wave stability analysis. Conse- 

quently, the interface instability is affected also by the shear com- 

ponents in phase with the wave slope (so-called ‘sheltering mech- 

anism’), and not only by the inertia of the two phases that are re- 

sponsible for the K-H mechanism. 

This study has been undertaken with the purpose of exploring 

the linear stability of two-phase stratified flows by the TF model. 

The main purpose is to determine quantitatively the effects of the 

closure relations on the TF model stability prediction. In particu- 

lar, the effects of wave induced stresses that are in phase with the 

wave slope (i.e., the sheltering term) are explored. To this end, the 

results are compared with the exact long-wave solution of the Orr–

Sommerfeld equations for a two-plate geometry. Such a study can 

reveal to what extent the ‘sheltering mechanism’ is of importance 

in destabilizing the interface between two laminar layers in the 

framework of TF models. The study can also identify the modifica- 

tions that are needed for improving the TF model predictions for 

more complicated and practical geometries where exact solutions 

are not available. 

2. Statement of the problem 

Consider the laminar flow of two immiscible, incompressible 

fluids, labeled j = 1, 2, flowing in an inclined channel (0 ≤β≤π /2) 

as shown in Fig. 1 . The flow, assumed isothermal and two dimen- 

sional, is driven by an imposed pressure gradient and a compo- 

nent of gravity in the ˆ x direction. We restrict our attention to sta- 

Fig. 1. Schematic description of two-layer flow configuration in an inclined channel. 

ble density stratification, so that the heavier fluid always forms the 

lower layer. The basic (steady and fully developed) flow is a two- 

layered Poiseuille flow with a flat interface, and the corresponding 

non dimensional velocity profiles and pressure gradient are given 

by 

u j ≡ U j = 1 + a j y + b j y 
2 , v j = 0 , j = 1 , 2 (1a) 
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where ˆ u j , ˆ v j , and ˆ p j are the velocities components and pressure of 

phase j fluid, μj and ρ j are the corresponding dynamic viscosity 

and density, respectively, and g denotes the gravitational acceler- 

ation. The velocity u i represents the basic flow interface velocity, 

and h j is the basic flow layer height of phase j fluid (see Fig. 1 ). 

The Martinelli and inclination parameters, which are the com- 

mon dimensionless parameters for two-phase flow and can be di- 

rectly calculated by the specified fluids’ properties and operational 

conditions, are define as follows 

X 
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Here q j is the feed flow rate of phase j and ( −d ̂  P /d ̂  x ) js = 

12 μ j q j /H 

3 is the corresponding superficial pressure drop for sin- 

gle phase flow in the channel, where H = h 1 + h 2 . Given the pa- 

rameters m , Y , and X 

2 (or q ), the heavy phase holdup, ˜ h = h 1 /H = 

n/ (1 + n ) , is obtained by solving the following implicit algebraic 
equation (e.g., Ullmann et al., 2003a ) 
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