EI SEVIED

Contents lists available at ScienceDirect

Catalysis Communications

journal homepage: www.elsevier.com/locate/catcom

Short communication

Preparation of Pd/(Ce_{1 - x}Y_x)O₂/ γ -Al₂O₃/cordierite catalysts and its catalytic combustion activity for methane

Hengcheng Liao *, Miaomiao Liu, Peiyuang Zuo

School of Materials Science and Engineering, Southeast University, Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing 211189, China

ARTICLE INFO

Article history:
Received 29 November 2015
Received in revised form 24 December 2015
Accepted 27 December 2015
Available online 29 December 2015

Keywords:
Cerium
Yttrium
Palladium
Coating
Catalytic activity
Methane

ABSTRACT

A series of ($Ce_{1-x}Y_x$) O_2 (x=0,0.15,0.35,0.5) coatings on γ -Al $_2O_3$ pre-coated cordierite honeycomb were prepared by sol–gel method, and then palladium was loaded by aqueous solution impregnation deposition with Pd(NO_3) $_2$ as precursor. The structure and morphology of samples were evaluated and the catalytic combustion activity for methane was also discussed. ($Ce_{1-x}Y_x$) O_2 synthesized by sol–gel has a single-phase cubic fluorite structure. Increasing the Y/Ce ratio can significantly improve the inner surface morphology of the honeycomb channels and also the coating mechanical stability, and leads to a considerable improvement in the catalytic activity of the prepared catalysts for methane.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

With increasingly stringent requirements for protecting our environment, catalytic combustion of nature gas (methane) has attracted more and more attention [1]. Monolithic catalysts are widely used for catalytic combustion of methane and other organics. As a supporter, cordierite ceramic honeycomb (abbreviated to COR) has very small specific surface area (usually <1 $\,\mathrm{m}^2/\mathrm{g})$ [2], thus $\gamma\text{-Al}_2\mathrm{O}_3$ coating is usually used as a transition layer to create a higher surface area [3], however, at high temperature, it is prone to transform into the $\theta\text{-phase}$, finally into the $\alpha\text{-form}$, which has a low specific surface area.

In order to prevent the transformation of γ -Al₂O₃ and also to enhance catalytic activities, some rare-earth element oxides (such as CeO₂, La₂O₃, and Y₂O₃) are commonly used as additives [4–6]. CeO₂ has been widely studied in recent years for catalytic application. CeO₂ has many advantages, such as: strong ability to store/release oxygen [7,8], high thermal and structure stabilities [9], and good ability to disperse the noble metal active component [10,11]. Doping divalent or trivalent ions in CeO₂ could improve its oxygen storage capacity [12,13]. Addition of Y to (Ce,Zr)O₂ solid solution could improve oxygen vacancies and promote the reduction of Ce⁴⁺ [14], and also improved the reduction–reoxidation properties of the active PdO species [15].

E-mail address: hengchengliao@seu.edu.cn (H. Liao).

In this paper, $(Ce_{1-x}Y_x)O_2$ solid solution coatings were prepared by sol–gel method. The effect of Y/Ce ratio on the phase constitution, surface morphology, and mechanical stabilities was investigated and the catalytic performance of the prepared $Pd/(Ce_{1-x}Y_x)O_2/\gamma-Al_2O_3/COR$ catalysts for methane was also discussed.

2. Experimental

2.1. Preparation of $(Ce_{1-x}Y_{x})O_{2}/\gamma$ - $Al_{2}O_{3}/COR$

A commercial honeycomb ceramic was cut into cuboid samples $(6~\text{mm} \times 6~\text{mm} \times 30~\text{mm})$ which were pretreated by conventional process. Then they were immersed in the γ -Al $_2$ O $_3$ transition sol for 5 mins and the excess γ -Al $_2$ O $_3$ sol inside the honeycomb channels was blown off, and then they were dried at 120 °C for 2 h and roasted at 550 °C for 2 h in a muffle furnace with flowing air. The amount of the loaded γ -Al $_2$ O $_3$ coating can reach 12 wt.% – 15 wt.% after double repeating. The prepared samples above were labeled as γ -Al $_2$ O $_3$ /COR.

Ce and Y nitrates were used as Ce- and Y- precursors, and the mole ratios of Ce and Y was 1:0, 0.85:0.15, 0.65:0.35, and 0.5:0.5. The mixed aqueous solution of Ce- and Y- nitrates and citric acid was prepared with distilled water. Citric acid was added as a complexing agent in 1:2 M ratio with respect to the sum of the metal salts. The mixed solution were heated at 70 °C in a water bath and constantly stirred until a stable sol was obtained. The γ -Al_2O_3/CORs were impregnated in this sol for 5 min. The excess sol inside the channels need blow off.

^{*} Corresponding author at: School of Materials Science and Engineering, Jiangning Campus of Southeast University, Nanjing 211189, China.

Fig. 1. XRD patterns of $(Ce_{1-x}Y_x)O_2$ (x = 0, 0.15, 0.35, 0.5) powders after calcination.

Table 1 Lattice constant and crystallite size of $(Ce_{1-x}Y_{x})O_{2}$.

х	Lattice constant a/nm	Crystallite size D/nm
0	0.5413	11.8
0.15	0.5402	9.5
0.35	0.5395	8.8
0.5	0.5378	8.4

Subsequently, they were dried at 120 °C for 2 h in air and roasted at 550 °C for 2 h. This processed sample is labeled as $(Ce_{1-x}Y_{x})O_{2}/\gamma$ -Al₂O₃/COR.

2.2. Preparation of catalysts

Catalysts were prepared by a classical aqueous solution impregnation method, in which $Pd(NO_3)_2$ is as precursors. The $(Ce_{1-x}Y_x)O_2/\gamma$ -Al $_2O_3/CORs$ were completely impregnated in the Pd-solution for 30 min, and the excess aqueous solution inside the channels was blown off. Then they were dried at 120 °C for 2 h in air and roasted at 450 °C for 2 h. The final sample is labeled as $Pd/(Ce_{1-x}Y_x)O_2/\gamma$ -Al $_2O_3/COR$.

2.3. Characterization

The XRD patterns of $(Ce_{1-x}Y_x)O_2$ dried gel powder were collected on a Bruker apparatus (D8-Discover), using Cu K α radiation ($\lambda=1.5418$ Å). The X-ray tube was operated at 40 kV and 30 mA and the scanning rate was 0.02° /step in the range of $20^\circ \le 2\theta \le 90^\circ$. The specific surface area was measured by N_2 adsorption at 77 K on ASAP 2000 M with the Brunauer–Emmet–Teller (BET) method. The surface morphology of the $(Ce_{1-x}Y_x)O_2$ coating was examined by XL30 environmental SEM.

Ultrasonic oscillating test was performed, to evaluate the cohesive strength of coating on the cordierite substrate, in a KQ-250B ultrasonic bath with a power of 220 W for 30 min. Before test, the dry sample was weighted as $m_{\rm before}$, and after test, the sample was dried again, and then weighted as $m_{\rm after}$. The mass losses of the coating was calculated using $\Delta W\% = (m_{\rm before} - m_{\rm after}) / m_{\rm before} \times 100\%$.

Inductively coupled plasma-optical emission spectroscopy (ICP-OES) was performed to measure the loading amount of palladium, cerium and yttrium in the prepared monolithic catalysts.

2.4. Catalytic activity evaluation

The catalytic combustion of methane on the Pd/(Ce₁ $_{x}Y_{x}$)O₂/ γ -Al₂O₃/COR catalysts was carried out in a conventional fixed-bed flow quartz micro-reactor (length = 400 mm, i.d. = 10 mm). A gas mixture

Fig. 2. The inner surface morphology of (Ce $_{1-x}Y_x$)O $_2/\gamma$ -Al $_2$ O $_3/CORs$ (a) x=0; (b) x=0.15; (c) x=0.35; (d) x=0.5.

Download English Version:

https://daneshyari.com/en/article/49950

Download Persian Version:

https://daneshyari.com/article/49950

<u>Daneshyari.com</u>