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a b s t r a c t 

The spectral element marker particle (SEMP) method is a high-order numerical scheme for modelling 

multiphase flow where the governing equations are discretised using the spectral element method and 

the (compressible) fluid phases are tracked using marker particles. Thus far, the method has been suc- 

cessfully applied to two-phase problems involving the collapse of a two-dimensional bubble in the vicin- 

ity of a rigid wall. In this article, the SEMP method is extended to include a third fluid phase before 

being applied to bubble collapse problems near a fluid-fluid interface. Two-phase bubble collapse near 

a rigid boundary (where a highly viscous third phase approximates the rigid boundary) is considered 

as validation of the method. A range of fluid parameter values and geometric configurations are stud- 

ied before a bioengineering application is considered. A simplified model of (micro)bubble-cell interac- 

tion is presented, with the aim of gaining initial insights into the flow mechanisms behind sonoporation 

and microbubble-enhanced targeted drug delivery. Results from this model indicate that the non-local 

cell membrane distortion (blebbing) phenomenon often observed experimentally may result from stress 

propagation along the cell surface and so be hydrodynamical in origin. 

© 2016 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

1. Introduction 

The dynamics of bubble collapse has received substantial at- 

tention in the literature over the past 100 years. Starting with 

Lord Rayleigh (1917) , who considered the collapse of a spheri- 

cal cavity in an infinite expanse of incompressible fluid, subse- 

quent experimental, numerical and analytical studies have high- 

lighted a complex physical process, where possible observed phe- 

nomena include jet formation, pressure shockwave emission and 

toroidal bubble formation (see, for example, Benjamin and Ellis, 

1966; Lauterborn and Ohl, 1997 ). Research is motivated by the 

prevalence of bubbles in nature and industry and their fundamen- 

tal role in many fluid systems. Cavitation damage due to bub- 

ble collapse is now a well-known phenomenon, and has negative 

consequences in a number of areas. In biomedicine, for example, 

ultrasound mediated drug delivery ( Hernot and Klibanov, 2008; 

Lentacker et al., 2014; Wu and Nyborg, 2008 ) and shock-wave 

lithotripsy procedures ( Freund et al., 2009; Kodama and Takayama, 

1998 ) can generate cavitation bubbles that may cause cell death 

and hemorrhaging in the surrounding tissue, respectively. How- 

ever, bubbles may also be used to dissolve blood clots (see e.g. 
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Unger et al., 2002 ), break through the blood-brain barrier (see e.g. 

Ting et al., 2012 ) and clean and sterilise surfaces (see e.g. Chahine 

et al., 2016; Song et al., 2004 ). Numerical studies of bubble dynam- 

ics have been dominated by the boundary element method (BEM), 

originally used in this context by Blake et al. (1986 , 1987) . The 

method requires the assumption of irrotationality, which consider- 

ably simplifies the governing equations. While this assumption has 

proven effective for moderate to high Reynolds numbers ( Curtiss 

et al., 2013; Klaseboer and Khoo, 2004a, b ) and in cases of weak 

flow compressibility ( Wang, 2014; Wang and Blake, 2010 ), it pre- 

cludes some key physics necessary in the modelling of multiphase 

biomedical flows, such as strong compressibility (i.e. ultrasound) 

and general non-Newtonian effects. 

Numerical solutions of the full Navier-Stokes equations for 

bubble dynamics problems have received considerably less at- 

tention in the literature than boundary elements, most likely 

due to the increased implementation difficulty and computa- 

tional time. Shopov and Minev (1992) ; Shopov et al. (1990) and 

Shopov et al. (1992) considered a finite element approximation of 

the incompressible Navier-Stokes equations, where the mesh was 

fitted to the bubble surface and evolved in a Lagrangian manner. 

Fitting the computational mesh to the bubble surface could sub- 

stantially increase the computational time, particularly under sig- 

nificant topological changes. Popinet and Zaleski (2002) produced 

a well-defined (unfitted) interface over a finite volume grid by 
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interpolating through bubble surface marker points using cubic 

splines. They found good agreement with experimental results for 

the incompressible phase of the dynamics but concluded that com- 

pressibility and thermal effects may be required for the compress- 

ible phase (bubble rebound). 

Wang and Blake (2010) developed an approximate theory for 

bubble dynamics in a compressible fluid using matched asymp- 

totic expansions. The perturbation was performed to second or- 

der using the bubble-wall Mach number (assumed to be small). 

The bubble dynamics could then be numerically modelled using 

traditional boundary elements with compressibility appearing in 

the far-field boundary condition. Due to the assumption of a small 

Mach number, the method may not be able to accurately capture 

the bubble behaviour during the latter stages of collapse when 

larger degrees of compressibility may be required. However, ex- 

cellent agreement was found with the Keller-Herring equation for 

spherical bubbles and test cases included the behaviour of a bub- 

ble under both a weak and strong acoustic wave. Wang (2014) sub- 

sequently applied the compressible BEM model to bubble collapse 

near a rigid wall. During the incompressible phase of the bubble 

dynamics, Wang (2014) achieved excellent agreement with experi- 

mental observations. During the bubble rebound, where compress- 

ibility is important, the agreement was an improvement on previ- 

ous results (e.g. Popinet and Zaleski, 2002 ) but still differed when 

compared to experiments (see their Fig. 7 ). It is likely that the 

secondary collapse phase required an amount of compressibility 

which is beyond the scope of the BEM model. In their boundary 

element study, ( Lee et al., 2007 ) took a different approach and ap- 

proximated compressible effects by incorporating a loss in energy 

(provided by experimental data) during the bubble rebound and 

found very good agreement with experimental results, including 

the capture of the elusive counterjet. Müller et al. (2010) consid- 

ered collapse of a gas filled bubble near a rigid wall using a fi- 

nite volume technique for the compressible Euler equations. They 

showed that when a bubble collapses near a rigid wall (in the ab- 

sence of viscosity, buoyancy and surface tension), the compress- 

ible bubble contents interact with reflected pressure shock-waves 

(caused by the oscillation of the bubble), producing vortices in the 

gaseous bubble contents. These vortices rotate in opposite direc- 

tions and are directed towards the rigid wall. The vortices pull the 

gaseous bubble contents and bubble surface towards the rigid wall 

producing the well-known toroidal shape and high-speed liquid 

jet. Importantly, these are observations which cannot be obtained 

from incompressible and irrotational simulations such as BEM. The 

above studies, particularly that of Müller et al. (2010) , illustrate 

the importance of compressibility, even in situations commonly as- 

sumed to be predominantly incompressible. It is evident that if 

compressible effects are to be included then the full compressible 

Navier-Stokes (or Euler) equations must be considered. 

Lind and Phillips developed a Spectral Element Marker Parti- 

cle (SEMP) method for fully compressible bubble collapse prob- 

lems in both Newtonian ( Lind and Phillips, 2012 ) and viscoelastic 

fluids ( Lind and Phillips, 2013 ) with small to moderate Reynolds 

numbers. SEMP uses the marker particle method ( Rider and 

Kothe, 1995 ) to track the fluid phases. The marker particle method 

is Lagrangian in nature and bears semblance to both the VOF 

( Hirt and Nichols, 1981 ) and the MAC ( Harlow and Welch, 1965 ) 

methods. A colour function C is determined by tracking massless 

marker particles. Each particle is assigned a particular colour de- 

pending upon the phase in which it resides, and because a par- 

ticle of fluid will remain of that fluid type (assuming no change 

in phase), a particle will keep its colour indefinitely. Within fluid- 

fluid interface regions, where two (or more) differently coloured 

sets of marker particles reside, a weighted average is taken of 

the surrounding particles to determine an interpolated colour at 

a desired grid point. In this article, SEMP is extended to include 

Fig. 1. Schematic of the bubble �b surrounded by an ambient fluid �f and placed 

near a fluid layer �c backed by a rigid wall. 

a third phase, that may be used to model deformable biological 

matter (e.g. cells or tissue). While there have been a number of 

works considering bubble collapse near deformable surfaces (see 

e.g. Klaseboer and Khoo, 2004b; Ohl et al., 2009 ), few include suf- 

ficient physics to model the complex multiphase biomedical pro- 

cesses that motivate this work. Indeed, the eventual aim is to 

gain insights into the flow mechanisms behind sonoporation (e.g. 

Lentacker et al., 2014 ) and microbubble-enhanced targeted drug 

delivery (e.g. Hernot and Klibanov, 2008 ). 

This article is structured as follows. The mathematical model 

and governing equations are introduced in Section 2 with their 

numerical approximation discussed in Section 3 . The three-phase 

method is validated in Section 4 before a numerical investigation 

into the effect of viscosity and the thickness of the third phase is 

given in Section 5 . A simplified model of (micro)bubble-cell inter- 

action is presented in Section 6 before the article is concluded in 

Section 7 . 

2. The mathematical model and governing equations 

Consider a two-dimensional (2D) domain �, which contains a 

gas-filled bubble �b of initial density ρb ,0 , surrounded by fluid 

�f of initial density ρ f ,0 , placed near a fluid layer �c such that 

� f = � \ (�b ∪ �c ) . Note that all variables with index b will refer 

to those associated with the bubble, those labelled f with the am- 

bient fluid and those labelled c with the fluid layer. A schematic is 

given in Fig. 1 . 

In general, the equations governing fluid motion are the math- 

ematical statements of conservation of momentum 

ρ
D u 

Dt 
= −∇p + ∇ · S , (1) 

and conservation of mass 

Dρ

Dt 
+ ρ∇ · u = 0 , 

where u is the velocity, p is the pressure, S is the extra-stress ten- 

sor and ρ is the density. In the majority of bubble simulations 

in the literature (see e.g. Blake et al., 1986; Curtiss et al., 2013; 

Lee et al., 2007; Popinet and Zaleski, 2002 ), the fluid phases are 

assumed to be incompressible. However, in modelling bubble dy- 

namics, particularly growth or collapse, one needs to account for 

the change in volume of the bubble, and so any fluid that may re- 

side within must be modelled as compressible. Furthermore, and 

as discussed in the introduction, compressibility is known to play 

an important role in the final stages of bubble collapse, contribut- 

ing significantly to energy dissipation ( Lee et al., 2007 ). Also, in 

the context of biomedical flows, if one requires accurate descrip- 

tions of any acoustic fields applied to or emitted from the bub- 

ble, compressibility and the complete conservation of mass equa- 

tion must be retained. Accordingly, a thermodynamic equation of 
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