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a b s t r a c t 

ODT (one-dimensional turbulence) simulations of particle-carrier gas interactions are performed in the 

jet flow configuration. Particles with different diameters are injected onto the centerline of a turbulent 

air jet. The particles are passive and do not impact the fluid phase. Their radial dispersion and axial 

velocities are obtained as functions of axial position. The time and length scales of the jet are varied 

through control of the jet exit velocity and nozzle diameter. Dispersion data at long times of flight for 

the nozzle diameter (7 mm), particle diameters (60 and 90 μm), and Reynolds numbers ( 10 , 0 0 0 –30 , 0 0 0 ) 

are analyzed to obtain the Lagrangian particle dispersivity. Flow statistics of the ODT particle model are 

compared to experimental measurements. It is shown that the particle tracking method is capable of 

yielding Lagrangian prediction of the dispersive transport of particles in a round jet. In this paper, three 

particle-eddy interaction models (Type-I, -C, and -IC) are presented to examine the details of particle 

dispersion and particle-eddy interaction in jet flow. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Particle and droplet dispersion in turbulent jet flows is an es- 

sential part of many important industrial processes. Typical exam- 

ples include the dispersion of liquid fuel droplets in gas combus- 

tors and the mixing of coal particles by the injection jets of coal- 

fired power plants. The dispersion of the particles largely deter- 

mines the efficiency and the stability of these processes. 

Many computational studies on gas-particle turbulent jets have 

been performed. Direct numerical simulations (DNS) have been 

used to study gas-particle jets at relatively low Reynolds numbers 

( Chien, 1982; Li et al., 2011 ). However, DNS for a high Reynolds 

number flow is not computationally efficient. Therefore, simulation 

approaches are required that do not resolve all flow scales in three 

dimensions. Many gas-particle flows have been studied in which 

the subgrid-scale turbulence is modeled using large eddy simula- 

tion (LES) ( Almeida and Jaberi, 2008; Yuu et al., 2001 ). LES pro- 

vides good means to capture unsteady physical features in the tur- 

bulence. The accuracy and the reliability of LES predictions depend 

on several factors, such as the accurate modeling of the subgrid- 

scale phase interactions. 
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A promising alternative approach is the one-dimensional turbu- 

lence (ODT) model, which is able to resolve a full range of length 

scales on a one-dimensional domain that is evolved at the finest 

time scales ( Kerstein, 1999; Kerstein et al., 2001 ). ODT has been 

applied to many different homogeneous and shear-dominating re- 

acting ( Echekki et al., 2001; Hewson and Kerstein, 20 01; 20 02; 

Lignell et al., 2012; Punati, 2012; Ricks et al., 2010 ) and nonreacting 

( Ashurst and Kerstein, 2005; Kerstein, 1999; Kerstein et al., 2001; 

Sun et al., 2014 ) flows including homogeneous turbulence, channel 

flow, jets, mixing layers, buoyant plumes, and wall fires. 

Schmidt et al. (2004) extended the ODT model to the predic- 

tion of particle-velocity statistics in turbulent channel flow. Punati 

(2012) , and Goshayeshi and Sutherland (2015a; 2015b) studied coal 

combustion and particle laden jets using ODT (using a version of 

the Type-C model noted below). In our previous study, one version 

of the ODT multiphase interaction model using an instantaneous 

(referred to as Type-I) particle-eddy interaction (PEI) model was 

presented to investigate particle transport and crossing-trajectory 

effects in homogeneous turbulence ( Sun et al., 2014 ). Here, we 

extend this previous ODT study to shear flows and present two 

new PEI models to analyze the behavior of individual particles in 

jets at high Reynolds numbers ( Re ). One of the models applies 

continuous PEI (referred to as Type-C) and the other combines 

instantaneous and continuous interaction features (referred to 

as Type-IC). 
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The remainder of this paper is organized as follow: first, a sum- 

mary description of ODT is presented, with details of the PEI mod- 

els given. This is followed by a presentation and discussion of the 

results of the Type-I, -C and -IC models, including comparisons 

to experimental results. Sensitivity of results to the single parti- 

cle model parameter is discussed, and summary and concluding 

remarks are given. 

2. Numerical description 

2.1. ODT model 

One-dimensional turbulence (ODT) is a numerical method to 

generate realizations of turbulent flows using a stochastic model 

of the turbulent cascade on a one-dimensional domain ( Kerstein, 

1999 ). The one-dimensional domain is formulated in the direction 

of primary velocity gradients and on which the governing equa- 

tions for, e.g., mass, momentum, energy, and species conservation 

are solved. Most ODT applications, including that presented here, 

use Cartesian coordinates in which the y, x and z coordinates are 

the ODT domain-aligned, streamwise (direction for flow evolution), 

and spanwise directions, respectively. 

The ODT model consists of two main mechanisms: diffusive ad- 

vancement, and advective eddy events. The diffusive evolution on 

the 1D domain is governed by transport equations (described be- 

low) that omit the nonlinear advective terms, which are modeled 

by the eddy events. These diffusive equations dissipate velocity 

fluctuations and kinetic energy, though this process is only signif- 

icant at diffusive scales, and the eddy events model the cascade 

of fluctuations to the dissipative scales. In general flows, nonlinear 

advection describes a vortex-stretching process that acts in three 

dimensions to transfer fluctuations to higher wave numbers and 

is costly to predict. In order to describe these nonlinear advective 

terms, ODT introduces the concept of the so-called “triplet map”

that transfers fluctuations to higher wave numbers during eddy 

events. The triplet maps that make up the eddy events in ODT oc- 

cur instantaneously. The rate of occurrence of this transfer by ODT 

eddy events is determined through a stochastic sampling of the 

evolving velocity field through a measure of the shear energy that 

is a function of the location on the domain and the eddy length 

scale (wavenumber). There are two approaches to evolve the ODT 

domain: (i) temporal evolution where each ODT realization is pa- 

rameterized by ( y, t ) and represents a (possibly Lagrangian) time 

history, and (ii) spatial evolution, where each ODT realization is pa- 

rameterized by ( y, x ). Even in predicting spatially developing flows 

like the jet in this case, most ODT simulations have been con- 

ducted using temporal evolution assuming a Lagrangian evolution 

of the flow domain to map results to the spatial evolution ( Hewson 

and Kerstein, 2001 ). 

2.1.1. Diffusive advancement 

In the Lagrangian frame of reference, choosing ( y, t ) as inde- 

pendent variables, the governing equations are derived from the 

Reynolds transport theorem and advanced in time along the ODT 

line ( Lignell et al., 2012 ). Since there is no mass source term, no 

non-convection mass flux, and uniform properties inside the grid 

control volumes in one dimension, the finite-volume equation ap- 

plied on the grid cells for the continuity equation is 

ρ� y = constant , (1) 

where the density ρ is constant for the nonreacting flow consid- 

ered here. The diffusive advancement evolves scalar equations of 

momentum (per mass) component U i using a conservative finite 

volume method written here for a given cell: 

dU i 

dt 
= − 1 

ρ� y 
( σi,e − σi,w 

) , (2) 

where σ i, j is the viscous stress. The subscripts e and w represent 

east and west faces of the control volume. The viscous stresses for 

the three velocity components are represented as 

σi = −μ
dU i 

dy 
, (3) 

where μ is viscosity. The spatial derivative appearing in this equa- 

tion is evaluated at cell faces using a finite difference approxima- 

tion between the two neighboring cells. 

2.1.2. Eddy events 

Turbulence is characterized by a three-dimensional vortex 

stretching process that is modeled in ODT through a representa- 

tive sequence of eddy events as introduced at the beginning of this 

section. This model has two key components, the triplet-map rep- 

resentation of the length-scale cascade and the model for the rate 

of triplet maps. Turbulent eddies are sampled randomly on the do- 

main as a function of the eddy location, represented by their left 

bound, y 0 , and by their size, l , with the triplet map occurring over 

the region [ y 0 , y 0 + l] for the given sample. The triplet map spa- 

tially compresses the fluid property profiles within [ y 0 , y 0 + l] by a 

factor of three. The original profiles are replaced with three copies 

of the compressed profiles, with the middle copy spatially inverted. 

This mapping is described by 

f ( y ) = y 0 + 

⎧ ⎪ ⎨ 

⎪ ⎩ 

3 ( y − y 0 ) if y 0 ≤ y ≤ y 0 + 1 / 3 l, 
2 l − 3 ( y − y 0 ) if y 0 + 1 / 3 l ≤ y ≤ y 0 + 2 / 3 l, 
3 ( y − y 0 ) − 2 l if y 0 + 2 / 3 l ≤ y ≤ y 0 + l, 
y − y 0 otherwise. 

(4) 

where f ( y ) and y are the original fluid location and the post-triplet- 

map location, respectively. The fluid outside [ y 0 , y 0 + l] is unaf- 

fected. The triplet map is measure preserving and all integral prop- 

erties (e.g., mass, momentum, and energy) or moments thereof 

are constant during a triplet map. Specifically, the kinetic energy 

is conserved, which is a desirable property because eddy events 

physically model the inviscid advection process. Immediately after 

the triplet map, kernel transformations are introduced that redis- 

tribute energy among the velocity components ( Wunsch and Ker- 

stein, 2001 ). The transformations are meant to model the velocity 

randomization and so-called return to isotropy effect in turbulent 

flows. The kernel can be considered as a wave function that adds 

or subtracts energy from the eddy based on the amplitude of the 

wave. An eddy event maps the velocity component i as follows: 

U i ( y ) −→ U i ( f ( y ) ) + c i K ( y ) , (5) 

where the kernel K ( y ) ≡ y − f ( y ) is the displacement induced by 

the triplet map and integrates to zero over the eddy interval. c i is 

the kernel coefficient of K ( y ) and is specified to ensure conserva- 

tion of energy among momentum components. This form is writ- 

ten for constant density flows, as studied here. A variable density 

formulation is also available ( Ashurst and Kerstein, 2005 ). 

The procedure to sample and accept an eddy follows that de- 

scribed in Lignell et al. (2012) , and a summary description is pro- 

vided here. The eddy rate density for an eddy occurrence at lo- 

cation y 0 and length l is denoted as λe ( y 0 , l, t ) and is dimen- 

sionally τ−1 
e l −2 where τ e is an eddy time scale given in Eq. (10) . 

The rate of all eddies at a given time is �(t) = 

∫ ∫ 
λe (y 0 , l, t) d y 0 d l, 

and the eddy PDF is defined as P (y 0 , l, t) = λ(y 0 , l, t ) / �(t ) . (In the 

following, the y 0 , l , and t functional dependencies will be pre- 

sumed.) Ideally, eddies would be sampled from this PDF, with oc- 

currence times sampled with Poisson statistics with mean rate 

�. However, this is inconvenient and computationally expensive 

since the two dimensional eddy distribution would have to be con- 

structed at each timestep, with a correspondingly complex sam- 

pling procedure involving numerical inversion. Instead, we use a 

thinning method ( Lewis and Shedler, 1979 ) coupled with the re- 

jection method ( Papoulis and Pillai, 2002 ). In a thinning process, 
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