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a b s t r a c t 

There has been a dramatic increase in the number of research publications using the population bal- 

ance equation (PBE). The PBE allows the prediction of the spatial distribution of the dispersed phase size 

for an accurate estimation of the flow fields in multiphase flows. A few recent studies have proposed 

new efficient numerical methods to solve non-homogeneous multivariate PBE and implemented the same 

in computational fluid dynamics (CFD) codes. However, these codes are generally benchmarked against 

other numerical methods and applied without verification. To address this gap, an analytical solution for 

a three-dimensional non-homogeneous bivariate PBE is presented here for the first time. The method 

of manufactured solutions (MMS) has been used to construct a solution of the non-homogeneous PBE 

containing breakage and coalescence terms, and an additional source term appearing as a result of this 

method. The analytical solution presented in this work can be used for the rigorous verification of com- 

puter codes written to solve the non-homogeneous bivariate PBE. Quantification of the errors due to 

different numerical schemes will also become possible with the availability of this analytical solution for 

the PBE. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The population balance equation (PBE) has attracted 

widespread interest in the field of multiphase flow modelling 

in recent years. There has been a dramatic increase in the number 

of research publications using the PBE to predict the spatial 

distribution of the dispersed phase size for an accurate estimation 

of the flow fields. The significance of modelling the polydisper- 

sity of the dispersed phase through solving the PBE has been 

found particularly useful in the case of higher dispersed phase 

concentrations, where particle aggregation and breakage effects 

are prominent, such as in turbulent flows (with liquid drops or 

gas bubbles as the dispersed phase). Although most of the studies 

have dealt with a monovariate 1 number density function (NDF) 

with the particle size as the internal coordinate, 2 a few recent 
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E-mail addresses: g.bhutani12@imperial.ac.uk (G. Bhutani), 

pbritopa@imperial.ac.uk (P.R. Brito-Parada). 
1 Monovariate, bivariate and multivariate are used to refer to the internal coordi- 

nates in this work. 
2 Internal coordinates include particle specific properties such as particle size, 

moisture content, composition, etc. 

works have coupled the PBE for a multivariate NDF with the flow 

equations, including a second internal coordinate such as chemical 

composition ( Buffo and Alopaeus, 2016; Buffo et al., 2012; Renze 

et al., 2014 ). Increased computational power and improvements in 

the solution methods for the PBE, have made it possible to solve 

such multivariate PBEs numerically. The present work proposes 

an analytical solution to a non-homogeneous 3 three-dimensional 

bivariate PBE, which can be used for verifying the specialised 

computational fluid dynamics (CFD) codes written to numerically 

solve the PBE containing multiple internal and external 4 indepen- 

dent coordinates. Please note that multivariate is used in reference 

to the internal coordinate in the NDF and dimension refers to the 

external coordinate in this text. 

Quadrature-based moment methods (QBMM) have made it 

computationally tractable to couple the multivariate PBE to the 

Eulerian–Eulerian flow equations. Methods such as the direct 

quadrature method of moments (DQMOM) ( Marchisio and 

Fox, 2005 ) and the conditional quadrature method of moments 

3 When describing the PBE, the words homogeneous and dimension are used in 

reference to the physical space in this text. Homogeneous therefore means spatially 

homogeneous when characterising the PBE. 
4 External coordinates are the same as spatial coordinates. 

http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.11.005 

0301-9322/© 2016 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.11.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmulflow
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmultiphaseflow.2016.11.005&domain=pdf
mailto:g.bhutani12@imperial.ac.uk
mailto:pbritopa@imperial.ac.uk
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.11.005


414 G. Bhutani, P.R. Brito-Parada / International Journal of Multiphase Flow 89 (2017) 413–416 

(CQMOM) ( Cheng and Fox, 2010 ) have recently been implemented 

in open-source codes for this purpose ( Buffo et al., 2013a; Renze 

et al., 2014 ). Code verification, which is a necessary step to assess 

the correctness of the computational method implemented for 

solving a partial differential equation (PDE), is however missing 

for the above implementations for non-homogeneous multivari- 

ate NDFs. Code verification ought to be performed against a 

benchmark solution for quantifying the accuracy of the numerical 

method and its order of convergence. Comparison with an ana- 

lytical solution is the best benchmark possible as rigorous code 

verification analysis can be performed with it. Although analytical 

solutions for certain (spatially) homogeneous PBEs are available 

( Marchisio and Fox, 2005; McCoy and Madras, 2003 ), no such 

solution exists for the non-homogeneous PBE for monovariate or 

multivariate NDFs with the PBE containing breakage and aggrega- 

tion (or coalescence) terms. The lack of an analytical solution for 

the latter has been the reason for the missing code verification for 

multivariate PBEs solved using DQMOM and CQMOM. For instance, 

Buffo (2012) perf ormed code benchmarking for a homogeneous PBE 

and the numerical method was then applied to predict the distri- 

bution of bubble size and composition using a non-homogeneous 

multivariate PBE, and hence the flow, in a bubble column. 

Validation of the numerical solution of a non-homogeneous bi- 

variate PBE simulation against experimental results can be found in 

the literature ( Buffo et al., 2013b ) but code verification has never 

been presented. Discrepancies seen in the numerical results can 

occur due to numerical errors, which may not be detected due to 

the missing code verification step. Quantification of these errors 

due to the different numerical schemes is therefore essential in or- 

der to obtain full confidence in the correct implementation of the 

PBE model. 

Higher-order discretisations for the convection term in the non- 

homogeneous PBE have been shown to result in a non-realisable 

moment set (also known as moment corruption) in certain QBMM, 

e.g. QMOM ( Marchisio and Fox, 2013 ). Moment corruption can be 

analysed rigorously through a comparison of the time evolution 

of the numerical solution with an analytical solution for the non- 

homogeneous PBE. The propagation of the error in different mo- 

ments can therefore be studied and compared for different ad- 

vective discretisation schemes. This is currently not possible as 

analytical solutions are only available for the homogeneous PBE 

( McCoy and Madras, 2003 ), which does not bring the issue of mo- 

ment corruption to light. The proposed analytical solution will al- 

low for the detection and analysis of the moment corruption issue. 

To address the above discussed limitations in the present scien- 

tific literature, an analytical solution to a three-dimensional non- 

homogeneous bivariate PBE is presented in this brief communica- 

tion. The method of manufactured solutions (MMS) ( Roache, 2002 ) 

has been used to generate this analytical solution. The pro- 

posed solution is sufficiently complex to test all terms in a tran- 

sient, non-homogeneous PBE containing breakage and coalescence 

terms. 

2. Method of manufactured solutions 

The MMS is a reverse approach that ‘manufactures’ an exact 

solution to a given PDE ( Roache, 2002 ). In order to ensure that 

the governing PDE is satisfied by the chosen solution, a suitable 

source term is added to it. The ‘manufactured’ solution must be 

analytic as well as non-trivial such that derivatives of all orders 

exist in the error (or Taylor) expansion of the discretised equation 

( Roache, 2002 ). This allows for the solution to “exercise” all terms 

in the error expansion, as stated by Roache (2002) , and makes 

it complex enough to distinguish between different discretisations 

through the quantification of the errors. Trigonometric and expo- 

nential functions are best suited for this purpose. The manufac- 

tured solution need not be physically realistic as code verification 

is a purely mathematical exercise, however it must be complex 

enough to distinguish between different discretisations. 

Jacobs et al. (2013) and Choudhary et al. (2016) have re- 

cently used MMS for verifying multiphase fluid flow solvers. 

Zhu et al. (2008) and Solsvik and Jakobsen (2016) used MMS to 

verify their solution methods for a homogeneous monovariate PBE. 

However, the complicated nature of the application of the MMS for 

the derivation of an analytical solution for the non-homogeneous 

multivariate PBE can be one of the reasons for the absence of this 

approach in the numerical verification of the non-homogeneous 

PBE solution codes. 

It must be stressed that the inclusion of an artificial source 

term in the PDE (appearing as a result of the MMS) does not make 

the code verification any less useful. A verification exercise with 

an analytical solution obtained using MMS will help identify any 

code implementation issues so that a system without the artificial 

source term can also be correctly solved ( Roache, 2002 ). 

3. Analytical solution 

A non-homogeneous PBE with breakage and coalescence terms 

can be written as ( Ramkrishna, 20 0 0 ): 

∂n 

∂t 
+ ∇ · (u n ) = B B − D B + B C − D C + S, (1) 

where n ( ξξξ , x , t) is the NDF as a function of the internal and ex- 

ternal coordinates, ξξξ and x , respectively, and the time t . In the 

above equation, u refers to the velocity vector and S is the (ar- 

tificial) MMS source term that has been added to the PBE. The ∇ 

operator applies to the external coordinates only. The terms B B and 

D B refer to the birth and death functions due to breakage, and B C 
and D C refer to the birth and death functions due to coalescence. 

Nucleation and growth are not considered in the present work. 

A bivariate, three-dimensional NDF 

n (ξ, x , t) = e −(ξ 2 
1 + ξ 2 

2 ) sin 

2 
t sin 

2 
x sin 

2 
y sin 

2 
z (2) 

is chosen as the ‘manufactured’ solution to the PBE in this work, 

where ξ = (ξ1 , ξ2 ) and x = (x, y, z) . The MMS source term S is then 

calculated using: 

S(ξ, x , t) = S 1 + S 2 + S 3 + S 4 + S 5 + S 6 . (3) 

The terms S 1 to S 6 are obtained as the contributions from the dif- 

ferent terms in Eq. (1) and are described below. 

The birth term due to breakage is written as: 

B B ( ξξξ ) = 

∫ 
�ξ′ 

ν(ξ′ ) a (ξ′ ) P (ξ| ξ′ ) n (ξ′ )d�ξ′ , (4) 

where d�ξ′ = d ξ ′ 
1 d ξ ′ 

2 , the domain of integration �ξ′ is the entire 

positive R 

2 plane, ν(ξ′ ) = 2 (for binary breakage) and the break- 

age rate a (ξ′ ) = 1 . The daughter distribution function in this case is 

chosen as the product of two delta functions for symmetric break- 

age: 

P (ξ| ξ′ ) = δ

(
ξ1 −

ξ ′ 
1 

2 

)
δ

(
ξ2 −

ξ ′ 
2 

2 

)
. (5) 

Since P ( ξ| ξ′ ) is a probability density function, it is chosen to satisfy 

the property 
∫ 
�ξ

P (ξ| ξ′ )d�ξ = 1 . 

In the present bivariate population balance problem both inter- 

nal variables are assumed to be extensive, as shown by the form of 

the above symmetric breakage daughter distribution function. This 

assumption is, however, by no means restrictive on the application 

of the MMS to verify the PBE solution methodology. The daugh- 

ter distribution function can be modified for an intensive internal 

variable (such as chemical composition), if required. 
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