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a b s t r a c t 

We performed Eulerian–Lagrangian direct numerical simulation of particle-laden channel flow at a fric- 

tional Reynolds number of 950. A fully parallelized deterministic particle collision algorithm is applied 

for elastic collisions between two particles and particles and the walls. A total number of 51 million 

mono-disperse particles is considered, resulting in a particle volume fraction close to 1 × 10 −4 . We stud- 

ied the results of the simulation after a statistically steady turbulent state and particle concentration were 

reached. In this state the particles close to the walls are preferentially located in the low-speed streaks, 

whereas the particle distribution in the center of the channel is rather non-uniform as well, showing 

large void regions. The presence of the particles results in a decrease of the turbulence dissipation rate 

of 20% close to the walls. We studied in particular the particle collision frequency as a function of the 

wall-normal coordinate and compared the simulation results with two theoretical expressions involving 

the radial distribution function at contact and the mean relative velocity of two colliding particles. It ap- 

peared that the radial distribution function diverges if the distance between the particles approaches the 

particle diameter. This is not only caused by the drift mechanisms but also by repeated collision events, 

which occur relatively more often in the center of the channel. We proposed a collision criterion that 

distinguishes repeated collisions from single collisions, and which is easy to apply during a simulation 

and in the computation of the radial distribution function and the mean relative velocity of two colliding 

particles. Simulation results and the two theoretical expressions for the collision frequency are in good 

agreement if this criterion is applied. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The collision process of droplets or solid particles in turbulent 

flows is relevant in many flows in nature and technological appli- 

cations. A crucial quantity is the collision frequency f , the number 

of collisions per unit time and volume. Let us consider a monodis- 

persed system of spherical particles. We denote the particle diam- 

eter by d p , the number of particles per unit volume by n , and the 

relative velocity between two particles just before collision by w . 

Sundaram and Collins (1997) derived the following estimate for the 

collision frequency for inertial particles in a turbulent flow: 

f (1) = 

1 

2 

n 

2 πd 2 p 〈| w |〉 g(d p ) . (1) 

The angular brackets denote the statistical mean, and g ( d p ) de- 

notes the particle radial distribution function at contact. For a sta- 
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tistically uniform spatial distribution of particles g(d p ) = 1 , and 

then the estimate reduces to the one known from classical ki- 

netic theory, based on the notion that the mean cylindrical volume 

swept by a single particle per unit time is equal to πd 2 p 〈| w |〉 . Thus, 

Eq. (1) is called the cylindrical estimate of the collision frequency. 

A second estimate of the collision frequency is the so-called 

spherical formulation ( Wang et al., 20 0 0 ), 

f (2) = n 

2 πd 2 p 〈| w r |〉 g(d p ) , (2) 

in which w r denotes the radial component of the relative veloc- 

ity just before collision. According to Saffman and Turner (1956) , 

the collision frequency in turbulent flows can be based on the 

net inward flux into a sphere of radius d p around a particle, and 

this flux can be estimated by half the area of this sphere multi- 

plied with the mean of the radial component of the relative ve- 

locity: 2 πd 2 p 〈| w r |〉 . The original expression of Saffman and Turner 

(1956) for the collision frequency of small non-inertial particles in 

isotropic turbulence can be derived from Eq. (2) with g(d p ) = 1 . 
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Zaichik et al. (2003) presented two models for the particle colli- 

sion frequency for homogeneous isotropic turbulence valid for the 

whole range of particle inertia from passive particles to the bal- 

listic limit based on the spherical formulation. One of the mod- 

els is based on the assumption that the velocities of particle and 

fluid obey a correlated Gaussian distribution, whereas the other 

starts from a kinetic equation for the probability distribution func- 

tion of the relative velocity of two particles. Both models give ad- 

equate results in comparison to DNS results of particle-laden ho- 

mogeneous isotropic turbulence. In a later paper, this work was 

extended to bi-disperse particles ( Zaichik et al., 2009 ). 

Concepts and arguments as those described above, in particu- 

lar the cylindrical concept, are typically used to arrive at stochas- 

tic models suitable for practical applications in, for example, spray 

technology. With the ultimate aim to improve such models and 

also to obtain more insight into the fundamentals of the collision 

process, it is interesting to investigate whether the expressions 

above are suitable descriptions for the actual collision frequency 

in particle-laden turbulent flows. This question has been investi- 

gated in the past, but only for isotropic turbulence, see Salazar and 

Collins (2012) , Salazar et al. (2008) , Sundaram and Collins (1997) , 

Wang et al. (20 0 0) . Reade and Collins (20 0 0) , Wang et al. (1998, 

20 0 0) concluded that the second expression is more accurate than 

the first expression, at least for homogeneous isotropic turbulence 

and for a case in which the actual contact frequencies were moni- 

tored but the collisions themselves were not performed (the parti- 

cles could move through each other). In practical applications, tur- 

bulence is often inhomogeneous and anisotropic, while particles 

cannot move through each other. 

The purpose of this paper is therefore to investigate the particle 

collision process and collision statistics (in particular statistics re- 

lated to the stochastic estimates of the collision frequency above) 

for an inhomogeneous particle-laden turbulent flow at reasonably 

high Reynolds number, taking into account all collisions. More 

specifically, we perform a point-particle direct numerical simula- 

tion of a turbulent channel flow at friction Reynolds number Re τ
equal to 950, including 51 million small inertial particles. We com- 

pute and investigate the collision frequency, the particle radial dis- 

tribution function and the components of the particle relative ve- 

locity vector w at various distances from the wall. The contents of 

this paper is as follows. The governing equations and numerical al- 

gorithm are specified in Section 2 . The results of the simulation are 

discussed in Sections 3 and 4 contains a discussion and a summary 

of the conclusions. 

2. Governing equations and numerical methods 

The system consists of a continuous phase, the gas, which is 

described in an Eulerian way, and a dispersed phase, discrete par- 

ticles, which are described in a Lagrangian way. The two phases are 

coupled by the drag force exerted by the gas on the particles and 

the resulting feedback force on the gas. Moreover, particles inter- 

act by collisions. The models and numerical methods for the two 

phases and the particle collisions are described in the following 

subsections. We consider fully-developed turbulent channel flow 

in the absence of gravity with periodic conditions in both stream- 

wise and spanwise direction. Throughout the paper we will use x 

as the streamwise coordinate, y as the wall-normal coordinate and 

z as the spanwise coordinate. The size of the computational do- 

main equals 2 πH in streamwise direction and πH in spanwise di- 

rection, where H is half the channel height. 

2.1. Continuous phase 

The continuous phase is treated in an Eulerian way and as- 

sumed to be incompressible. The volume fraction of the particles 

is taken so small that the only effect of the particles on the gas is 

the two-way coupling force. Therefore, the gas satisfies the conti- 

nuity equation for incompressible flow, 

∇ · u = 0 , (3) 

where u is the velocity of the gas. Moreover, the gas momen- 

tum equation is modeled by the Navier–Stokes equation for incom- 

pressible flow, supplemented with a model for the interaction force 

between the two phases: 

∂ u 

∂t 
+ ω × u + ∇P = ν�u + 

b 

ρg 
+ 

f 2 w 

ρg 
, (4) 

where ω = ∇ × u is the vorticity, P = p/ρg + 

1 
2 u 

2 , ν and ρg are the 

kinematic viscosity and mass density of the gas, p is the static 

pressure, and b is the driving force density necessary to main- 

tain the flow. Finally, f 2 w 

, where the subscript 2w stands for two- 

way coupling, describes the momentum exchange between the two 

phases that will be specified in Section 2.3 . The driving force den- 

sity is taken constant in space and time and is directed in the 

streamwise direction. 

In the two periodic directions a Fourier–Galerkin approach 

is chosen, whereas the wall-normal direction is treated by a 

Chebyshev-tau method. The incompressibility constraint is satisfied 

by using the wall-normal component of the vorticity vector and 

the Laplacian of the wall-normal velocity component as dependent 

variables, instead of the three velocity components. Hence, the spa- 

tial discretization of the problem for the gas velocity closely fol- 

lows the method by Kim et al. (1987) . Nonlinear terms are calcu- 

lated in physical space by fast Fourier transform (FFT) with appli- 

cation of the 3/2 rule in both periodic directions. For integration in 

time a combination of a second-order accurate three-stage Runge–

Kutta method and the implicit Crank–Nicolson method is chosen 

according to Spalart et al. (1991) . In this way the nonlinear terms 

are treated in an explicit way, whereas the linear terms are treated 

implicitly. This method has been used and validated extensively at 

various frictional Reynolds numbers ranging between 180 and 950 

( Kuerten and Brouwers, 2013; Vreman and Kuerten, 2014a,b ). 

The magnitude of the driving force results in a frictional 

Reynolds number equal to Re τ = 950 , which corresponds to a bulk 

Reynolds number of approximately 19,0 0 0, in the absence of two- 

way coupling between particles and gas. The mass fraction of par- 

ticles is so low that the effect of two-way coupling on the frictional 

Reynolds number is less than 1%. The numbers of Fourier modes 

in the two periodic directions equal 768, whereas 385 Chebyshev 

polynomials are used in the wall-normal direction. The resolution 

in the wall-normal direction is equal to the one applied by Hoyas 

and Jiménez (2008) . The grid spacing equals 7.8 νu −1 
τ in streamwise 

direction and 3.9 νu −1 
τ in spanwise direction, where u τ is the fric- 

tion velocity. This is a higher resolution than used by Hoyas and 

Jiménez, but our computational domain is much smaller. The time 

step used in the simulation equals 0 . 095 νu −2 
τ . Results for single- 

phase flow agree well with the results by Hoyas and Jiménez 

(2008) . 

2.2. Dispersed phase 

The dispersed phase consists of solid, spherical particles, which 

are treated in a Lagrangian way, by solving equations for the po- 

sition and velocity of each individual particle. Furthermore, the 

particles are sufficiently small to allow a point particle approach. 

Since the mass density of a particle is several orders of magnitude 

larger than the mass density of the gas, the only relevant force 

between the two phases is the drag force ( Armenio and Fiorotto, 

2001 ). Moreover, we do not take gravity into account. For lower 

Reynolds number, a comparison between a case with and with- 

out gravity is shown in Kuerten and Vreman (2015) , revealing that 
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