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A novel technique for identifying and characterising clusters of particles from measurements within a 

densely seeded two-phase flow is reported. This technique involves the smoothing of normalised instan- 

taneous planar images of particle concentration followed by the application of a robust and unambiguous 

dynamic threshold to identify particle clusters. Also reported is a method to extract quantitative cluster 

data including cluster length, width and number of branches. The method employs an algorithm to mor- 

phologically skeletonize images of clusters, and subsequently, prune skeleton branches to select those 

which most strongly represent the shape of the cluster. Together, these techniques have been shown to 

identify and characterise two-dimensional slices of three-dimensional particle clusters of complex shapes, 

including those that are bent, wrinkled and branched, with an uncertainty of ≈4% relative to the manu- 

ally determined values. This method was applied to planar measurements of particles in a heavily seeded 

turbulent jet with an exit Stokes number of Sk D = 1 . 4 and Reynolds number of Re D = 10 , 0 0 0 , based on 

the pipe diameter, D . The results show that particle clusters are already present at the exit plane and have 

a characteristic width that is narrowly distributed around an average value of ≈0.17 D . This implies that 

particle clusters are generated inside the pipe at this preferred length scale. The results also show that 

the average cluster length at the pipe exit is ≈1.0 D , which, together with the observation that the clus- 

ters are oriented at oblique angles to the axis of the jet, suggests that the length of these clusters within 

the pipe is limited by the pipe diameter. The aspect ratio of the cluster slices was found to be typically 

AR ≈ 6 − 7 , consistent with the observations that the clusters form long, thin, filament-like structures. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Particle-laden turbulent jets are utilised in many scientific and 

industrial applications, most notably in the applications for the 

combustion of pulverised fuels, the processing of minerals, and 

more recently, in concentrating solar thermal reactors. In these 

flows, it has been observed that the instantaneous spatial distri- 

bution of particles differs significantly from a random distribution, 

with particles within the flow being preferentially distributed 

into instantaneous regions of localised, high particle concentra- 

tion called “clusters” ( Birzer et al., 2011a, 2011b; Longmire and 

Eaton, 1992; Zimmer and Ikeda, 2003 ). This naturally occurring 

phenomenon has been shown to have a significant impact on 

reacting flows, affecting heat transfer, ignition distance, ignition 

temperature, stoichiometry and emissions, because they imply a 
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non-uniform distribution of fuel within the flame ( Abbas et al., 

1993; Annamalai and Ryan, 1992; Cassel and Liebman, 1959; Smith 

et al., 2002 ). However, while their significance is well understood, 

a quantitative analysis of the significance of particle clustering in 

two-phase flows is currently limited. In particular, a systematic 

and statistical assessment of particle clustering in turbulent flows 

in the two-way coupling regime, whereby the particle number 

density is sufficiently high that the particles affect the gas-phase, 

is almost entirely absent. Therefore, the overall aim of the present 

paper is to begin to meet this need for quantitative measurements 

of clusters in flows with high particle number density. 

Previous studies on preferential concentration of particles have 

highlighted the importance of the Stokes number in determining 

the extent of particle clustering ( Aliseda et al., 2002; Bec et al., 

2007; Calzavarini et al., 2008; Eaton and Fessler, 1994; Fessler 

et al., 1994; Gualtieri et al., 2009; Hogan and Cuzzi, 2001; Mon- 

chaux et al., 2010; Rouson and Eaton, 2001; Wang and Maxey, 

1993; Yoshimoto and Goto, 2007 ), where the Stokes number is 

defined as the ratio of time-scales of particle response to character- 

istic fluid eddy. In particular, clustering has been shown to be most 
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significant where the Stokes number is of order unity ( Bec et al., 

2007; Calzavarini et al., 2008; Fessler et al., 1994; Gualtieri et al., 

2009; Rouson and Eaton, 2001; Wang and Maxey, 1993; Yoshimoto 

and Goto, 2007 ). Because turbulence comprises a spectrum of 

scales, from the smallest dissipative length scales to the largest in- 

ertial length scales, it is likely that more than one length scale can 

influence particle clustering ( Aliseda et al., 2002; Bec et al., 2007; 

Eaton and Fessler, 1994; Goto and Vassilicos, 2006; Gualtieri et al., 

2009; Monchaux et al., 2010; Yoshimoto and Goto, 2007 ). Evidence 

for this can be found in the range of length scales associated with 

clusters, such as their length, width and spacing. Hence there is a 

need for detailed measurements of cluster dimensions and shapes. 

Despite their importance, there is a lack of data of the mag- 

nitude of cluster length scales, in part because of the limitations 

of current methods to determine them. While methods of ana- 

lyzing particle clustering, such as statistical box counting ( Aliseda 

et al., 2002; Bec et al., 2007; Fessler et al., 1994; Hogan and 

Cuzzi, 2001; Rouson and Eaton, 2001; Wang and Maxey, 1993 ), the 

radial distribution function ( Gualtieri et al., 2009; Salazar et al., 

2008 ), the pair correlation function ( Goto and Vassilicos, 2006; 

Saw et al., 2008; Yoshimoto and Goto, 2007 ), Minkowski function- 

als ( Calzavarini et al., 2008 ) and Voronoï analysis ( Monchaux et al., 

2010; Obligado et al., 2014 ) are capable of providing useful infor- 

mation such as the characteristic cluster length scale and the de- 

gree of global clustering, they crucially require that individual par- 

ticles be spatially resolved. This, in turn, requires probe sizes that 

are significantly smaller than the inter-particle spacing. As the lim- 

iting probe dimension in typical laser diagnostic measurements is 

the light sheet thickness, the resolution of individual particles is 

only possible at low volumetric loadings. This limits the detection 

of clusters with existing methods to the dilute regime, i.e., to flow 

conditions whereby the particle volume loading, β , and/or the par- 

ticle number density, ˜ N p , is small (see Table 1 ). As there is signifi- 

cant practical and scientific interest in two-phase flows in the two- 

way and four-way coupling regimes, where volumetric loadings are 

large ( Elghobashi, 2006 ), there is a clear need for a method to de- 

tect clusters from images in which individual particles are not re- 

solved. Furthermore, the requirement to capture the largest length 

scales of a cluster, which can be of the order of the local jet diam- 

eter ( Birzer et al., 2011a, 2011b ), together with the practical con- 

straints of detector arrays also limit the capacity to resolve both 

the particle size and the maximum dimensions of a cluster. This 

provides a further need for methods to detect clusters under con- 

ditions in which individual particles are not resolved. 

The identification and characterisation of particle clusters in a 

densely-seeded turbulent flow from planar images is non-trivial, 

because particle clusters within the same flow may have different 

sizes, concentrations, orientations and shapes. In previous stud- 

ies this process typically involves the use of an arbitrary global 

threshold in conjunction with spatially averaging or binning of 

the particle concentration field across a specified length scale 

( Birzer et al., 2011a, 2011b; Monchaux et al., 2012; Zimmer and 

Ikeda, 2003 ). While no absolute measure of a cluster is possi- 

ble, it is desirable to replace the use of these arbitrary parame- 

ters with statistically robust parameters that are unambiguous and 

justifiable. 

Once clusters are identified, a further step is required to mea- 

sure and classify the characteristic dimensions of these clusters. 

One such scheme, albeit for a different class of flow, was intro- 

duced by Qamar et al. (2011) , who fitted equivalent ellipses to soot 

sheets to determine their characteristic lengths and widths. This 

method was further improved by Chan et al. (2014) , who modi- 

fied the equivalent-ellipse method for use with curved or bent soot 

sheets. However, as is demonstrated within the analysis in the cur- 

rent paper, neither of these methods are suitable for use on clus- 

ters with highly irregular, wrinkled, or branched shapes. T
a
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