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a b s t r a c t

Analysis of entropy generation and heat transfer in the boundary layer flow over a thin needle moving in
a parallel stream is performed in this work. Energy dissipation and nonlinear radiation terms are
incorporated in the energy equation. It is assumed that the free stream velocity u∞ is in the direction of
positive x� axis (axial direction) and the thin needle moves in the direction of free stream velocity. The
problem is self-similar in the presence of viscous dissipation and non-linear Rosseland thermal radiation.
The reduced self-similar governing equations are solved numerically using shooting and fourth order
Runge-Kutta method. The expressions for dimensionless volumetric entropy generation rate and Bejan
number are also obtained by selecting suitable similarity variables. The effects of the Eckert number,
heating parameter, radiation parameter, Prandtl number, velocity ratio parameter and dimensionless size
of a thin needle are described graphically in detail. The analysis reveals that the entropy generation
decreases by decreasing the size of the thin needle. Entropy generation number increases with the
increasing values of the Eckert number, Prandtl number and the temperature parameter. Moreover, it is
observed that the Bejan number decreases by increasing the thermal radiation parameter. Validation of
present analysis is performed by comparing the obtained results with those available in the existing
literature and found a very good agreement.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

All bodies having a temperature above absolute zero emit en-
ergy in the form of electromagnetic waves. This type of energy
exchange due to temperature is termed as thermal radiation.
Thermal radiation greatly influences the effects of heat transfer
mainly in the high temperature regime such as cooling system,
solar power technology, hypersonic flights, space vehicle re-entry
and rocket combustion chambers. Smith [1] firstly, investigated
the effects of thermal radiation on boundary layer flow. In the
presence of convection and thermal radiation the energy conser-
vation equation becomes a complicated nonlinear integro-
differential equation, therefore, Rosseland approximation [2] is
used to avoid the mathematical complexity. Perdikis and Raptis [3]
applied the linear Rosseland approximation to study the heat
transfer analysis in the boundary layer flux on a stationary flat

plate. After this, many researchers studied the effects of thermal
radiation in the boundary layer using the linearized form of the
Rosseland approximation [4e8]. The linearized form of the Rosse-
land approximation is valid only when the temperature difference
between the solid boundary and the ambient fluid is low. Magyari
and Pantokratoras [9] re-examined the linear Rosseland approxi-
mation problem and showed that the problem is governed by a
single-parameter approach instead of two parametric approach.
The influence of nonlinear Rosseland thermal radiation on classical
Blasius and Sakiadis flow has been studied by Pantokratoras and
Fang [10,11]. They concluded that nonlinear Rosseland radiation
approximation is valid for low and high temperature difference
between the wall and the bulk fluid. Furthermore, the temperature
profile is S-shaped in a case of nonlinear Rosseland approximation
as compared to a linear approximation.

The boundary layer flow of viscous fluid over a thin needle was
studied by Lee [12]. Cebeci and Na [13] examined the free con-
vection heat transfer from a thin needle. They found a similarity
between the heat transfer from a thin needle and flat plate, in the
sense that both are increasing function of Prandtl number. The

* Corresponding author.
E-mail address: idreesafridi313@gmail.com (M.I. Afridi).

Contents lists available at ScienceDirect

International Journal of Thermal Sciences

journal homepage: www.elsevier .com/locate/ i j ts

https://doi.org/10.1016/j.ijthermalsci.2017.09.014
1290-0729/© 2017 Elsevier Masson SAS. All rights reserved.

International Journal of Thermal Sciences 123 (2018) 117e128

mailto:idreesafridi313@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijthermalsci.2017.09.014&domain=pdf
www.sciencedirect.com/science/journal/12900729
http://www.elsevier.com/locate/ijts
https://doi.org/10.1016/j.ijthermalsci.2017.09.014
https://doi.org/10.1016/j.ijthermalsci.2017.09.014
https://doi.org/10.1016/j.ijthermalsci.2017.09.014


laminar free convection flow over an isothermal vertical needlewas
reported by Narian and Uberoi [14]. Narain and Uberoi [15] also
investigated the mixed convective flow over the thin needle, taking
separately the isothermal and isoflux boundary conditions. Trim-
bitas et al. [16] numerically discussed the mixed convection
boundary layer flow of nanofluid over a vertically stationary thin
needle. Ishak et al. [17] studied the boundary layer flow over a thin
needle in a parallel free stream using Keller box method. They
found that dual solution exists when the needle and free stream
move in opposite directions. Ahmed et al. [18] modelled the
boundary layer flow over a thin needle considering the variable
heat flux boundary condition.

The study of MHD (magnetohydrodynamic) flow for electrically
conducting fluid is of great interest in many engineering problems
such as metal-working processes, plasma studies, cooling of nu-
clear reactors, petroleum industries, crystal growth and the
boundary layer control in aerodynamics. Pavlov [19] studied the
effects of magnetic field on boundary layer flow induced by a
stretching sheet. Further analysis of MHD flow has been made by
Ali et al. [20,21], Hsiao [22,23], Sheikh et al. [24], Khan [25], Vaj-
ravelu and Hadjinicolaou [26] and Chamkha [27].

In the design and development of engineering products both
quality and quantity of energy are very important parameters. The
second law of thermodynamics provides us with the necessary
tools to determine the quality and degree of degradation of energy
during a process. Irreversibility or entropy is that important tool
which measures the quality of energy. According to the second law
of thermodynamics, during the conversion of energy to some useful
work there is a loss of energy which reduces the performance of
energy conversion devices. This degrading of energy (destruction of
energy) is proportional to entropy generation. Consequently, the
production of entropy in a system results in a decrease in the
amount of available energy (exergy). Thus, the performance of a
thermal system can be improved by reducing the generation of
entropy. Therefore, it is very important to know the distribution of
entropy generation during the thermodynamic process in order to
reduce the entropy production.

For the first time, Bejan [28,29] studied the causes of entropy
generation in the convective heat transfer problem. Bejan [28]
found that the temperature gradient due to the finite difference
in temperature and the velocity gradient (fluid friction) is respon-
sible for the entropy production in the fluid flow process. Reveillere
and Baytas [30] studied the effects of suction/injection on entropy
generation in boundary layer flow over a flat plate. Abbassi et al.
[31] investigated the entropy generation in the Poiseuille-Benard
channel by using the finite element method. Mahmud and Fraser
[32] performed the entropy analysis of forced convection flow in-
side a channel with circular cross section and the channel made by
two parallel plates. Weigand and Birkefeld [33] provided the sim-
ilarity solutions of energy transport equation. Aksoy [34] analyti-
cally investigated the effects of couple stresses on entropy
generation in a fluid flow between two parallel plates. Further,
many researchers carried out second law analysis for the fluid flow
and heat transfer problem in order to minimize the generation of
entropy [35e44]. However, the heat transfer analysis and entropy
generation in boundary layer flow over a thin needle moving in a
flowing fluid in the presence of viscous dissipation and nonlinear
radiation has not been reported in the literature. Therefore, such
problems for thin needle still need to be explored.

The aim of the present article is to investigate the heat transfer
analysis and entropy generation in boundary layer flow over a thin
needle moving in a parallel free stream of viscous fluid. The effects
of viscous dissipation and nonlinear radiation are also taken into
account. The entropy generation number is computed by
substituting the velocity and temperature profile obtained from the

momentum and energy equation. To validate the obtained nu-
merical results, the comparison has been made with the existing
results in the literature. The variations of velocity profile, temper-
ature profile and entropy generation number with physical flow
parameters are plotted graphically and discussed in detail.

2. Mathematical modeling

Consider the steady flow of an incompressible fluid over a thin
needle moving with a constant velocity uw in a parallel free stream.
It is assumed that the thickness of the needle is comparable to or
smaller than that of the momentum and thermal boundary layer
over the, but the influence of the curvature in the transverse di-
rection is significant. Pressure gradient along the needle is negli-
gible i.e. vp

vx ¼ 0 and r ¼ RðxÞ describes the radius of the needle,
where r and x represent the radial and axial coordinates. The flow
configuration and coordinate system are shown in Fig. 1. Under
these assumptions the boundary layer equations in cylindrical co-
ordinates are
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Here, u and v respectively represent the velocity components in
the axial and radial directions, r and n shows density and kinematic
viscosity of the fluid respectively. The following boundary condi-
tions are assumed for the present study

u ¼ uw; v ¼ 0; at r ¼ RðxÞ
u/u∞ as r/∞

�
: (3)

The following similarity variables are used in order the reduce
Eq. (2) into ordinary differential equation (see Ref. [17])

j ¼ n x f ðxÞ; x ¼ Ur2

nx
; (4)

where j is stream function satisfied Eq. (1) identically and defined

as u ¼ 1
r
vj
vr and v ¼ �1

r
vj
vx; U ¼ uw þ u∞s0 is composite velocity and

f ðxÞ represents dimensionless stream function. By setting x ¼ a

(refers to the wall of the needle) in Eq. (4), we get RðxÞ ¼
�
anx
U

�1=2
(prescribe the shape and size of the surface of revolution).

Using Eq. (4), Eq. (2) becomes

Fig. 1. Physical flow model and coordinate system.
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