International Journal of Thermal Sciences 123 (2018) 140—150

journal homepage: www.elsevier.com/locate/ijts

Contents lists available at ScienceDirect

International Journal of Thermal Sciences

International
Journall of
Thermal

Sciences.

Semi-analytical solutions for the transient temperature fields induced
by a moving heat source in an orthogonal domain

@ CrossMark

T.F. Flint * >, J.A. Francis ™, M.C. Smith *®, A.N. Vasileiou *®

@ Modelling and Simulation Centre, The University of Manchester, Oxford Road, Manchester, UK

b School of MACE, The University of Manchester, Oxford Road, Manchester, UK

ARTICLE INFO ABSTRACT

Article history:

Received 5 October 2016
Received in revised form

30 June 2017

Accepted 13 September 2017

A semi-analytical solution has been derived for the transient temperature fields that are generated in a
three-dimensional solid body when it is subjected to one or more moving heat sources. The solution was
derived using the Green's function method, and is applicable to any orthogonal domain that is subject to
arbitrary boundary conditions. The solution can account for any linear combination of double-ellipsoidal
or double-ellipsoidal-conical (DEC) heat sources. It can therefore be applied in situations ranging from an

electric arc moving across a flat plate, to partial-penetration or full-penetration welding either with a
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laser or an electron beam. In this work, full penetration electron beam welds in 30 mm and 130 mm thick
sections of SA508 steel were used as experimental test cases. The solution was shown to offer improved
accuracy and dramatic reductions in solution times when compared with numerical methods, thereby
lending itself to real-time in process monitoring of fusion welding processes.

© 2017 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The simulation of physical processes in which changes of state
occur, with a view to generating predictions for transient temper-
ature fields, is computationally expensive. Advances have been
made using fully coupled thermal-fluid simulations using source
terms in the Navier-Stokes equations in order to arrest the motion
in the solid state [1,2], and source terms in the energy equations to
account for latent heat and energy generation [3]. In the modelling
of fusion welding processes, another option for the prediction of
transient temperature fields is to neglect mass transport associated
with weld pool convection and other phenomena, and to solve the
heat equation with a representative model of the welding heat
source. Three-dimensional volumetric heat sources have been
shown to produce the most accurate predictions in such scenarios
[4—7]. Nevertheless, both the thermal-fluid solution procedure, and
the heat equation solution procedure, are subject to spatial dis-
cretisation errors and both rely on closely spaced calculation points
in order to predict the evolution of the various fields, particularly
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the temperature field [8]. Alternatively, semi-analytical techniques
may be used [9].

Semi-analytical approaches involve determining the thermal
response of a system to an infinitesimally small impulse of heat,
and integrating this response over the domain, which is perturbed
by the chosen heat source distribution [10,11]. This methodology
again neglects any motion in the liquid state and produces a solu-
tion to the heat equation. Heat kernels are calculated analytically
and then integrated numerically over a desired time interval, which
is why such approaches are often referred to as semi-analytical
techniques. The most mature of these approaches is the Greens
function method [11,12].

A disadvantage associated with semi-analytical methods is that
the domain over which the heat kernels are calculated must be
orthogonal in order to construct appropriate Dirichlet and/or
Neumann boundary conditions using the method of images (MOI).
This often limits the application of these heat kernels to idealised
scenarios [9]. However, certain physical processes do involve the
application of a distributed source of heat to an orthogonal domain,
with one example being the electron beam (EB) welding process
when applied to the butt-welding of flat plates. Indeed, any fusion
welding process, whether it involve an electric arc, a laser or an
electron beam, will satisfy these conditions provided that a square-
butt weld configuration is employed, regardless of whether the

1290-0729/© 2017 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


http://creativecommons.org/licenses/by/4.0/
mailto:Thomas.Flint@manchester.ac.uk
mailto:John.Francis@manchester.ac.uk
mailto:John.Francis@manchester.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijthermalsci.2017.09.012&domain=pdf
www.sciencedirect.com/science/journal/12900729
http://www.elsevier.com/locate/ijts
https://doi.org/10.1016/j.ijthermalsci.2017.09.012
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ijthermalsci.2017.09.012
https://doi.org/10.1016/j.ijthermalsci.2017.09.012

TE Flint et al. / International Journal of Thermal Sciences 123 (2018) 140—150 141

resulting weld fully penetrates the plates or not. In such cases, the
calculation procedure for the heat kernels fundamentally maintains
that they are free from discretisation errors, and this is a major
advantage of the semi-analytical solution procedure over schemes
in which the spatial thermal response is calculated over a dis-
cretised grid [13]. Clearly, for either numerical or semi-analytical
solution procedures to be representative of a process, an appro-
priate heat source model must be used [4].

In this work, we present a semi-analytical solution for a welding
heat source travelling across an orthogonal domain, and we vali-
date the solution using experimental data that was obtained from
the EB welding process. This process utilises a focused beam of high
velocity electrons to generate heat at the interface between two
mating surfaces. The material in the vicinity of the seam melts and
flows together [3]. The high power density causes localised
vaporisation, and vapour pressure leads to the formation of a
capillary region in the molten weld pool that is often called a
keyhole [14]. A keyhole will not form if the power density is
insufficient to cause significant vaporisation and, as such, the
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penetration depth of an incident electron beam into the parent
material is related to the beam power density [15]. The prediction
of transient temperature fields for the electron beam welding
process is of significant interest to the nuclear industry, where
models for micro-structural evolution and the development of re-
sidual stresses rely on the accurate prediction of welding thermal
cycles.

Recently, a heat source model was developed that can represent
welding processes in scenarios ranging from an electric arc
impinging on a flat plate to an electron beam being applied in the
keyhole mode. This model is referred to as the double-ellipsoidal-
conical (DEC) heat source model [7]. In this work, the DEC heat
source model is incorporated into a Greens function semi-analytical
solution procedure and used to predict the transient temperature
fields for two EB welding scenarios. Given the inherent flexibility of
the DEC heat source model, the solution presented in this work will
have numerous applications, and these will not be limited to EB
welding. The solution will be applicable to any situation in which an
orthogonal domain is subjected to a heat source, or any linear
combination of heat sources, where the DEC model can represent
each heat source. Furthermore, the computational efficiency asso-
ciated with this semi-analytical solution may generate opportu-
nities for the application of this approach in real-time process
monitoring for high energy density welding processes.

2. Semi-analytical solution procedure

For transient heat conduction, a Green's function can describe
the temperature distribution caused by an instantaneous, local heat
pulse. The Green's function for a given geometry and set of ho-
mogeneous boundary conditions is a building block for the tem-
perature distribution due to a functional initial temperature
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distribution, and an internal heat flux distribution, g [16]. Multi-
plication of one-dimensional Green's functions may be used to
construct solutions of higher dimensional order [10]. In order to
compute the temperature field produced by the DEC heat source
model, one must calculate the thermal response due to an infini-
tesimally small heat quantity, , acting instantaneously at time t’
and at point (x',)’,Z') in an infinite domain [9,10]. This response
may then be summed with the thermal responses associated with
all equivalent heat pulses acting throughout the volume of the
domain.

If ¢ acts instantaneously at time t’ and at point (x',y’,Z') in an
infinite domain the infinitesimal rise in temperature due to this
point heat pulse dTy , ) is given by ,%K@‘X,,yy‘uM)dt’, where K is
the three dimensional fundamental solution for an infinite domain,
as given by Equation (1) [17]. Here, p is the mass density and ¢ is
the specific heat at constant pressure, a = k/pcp is the thermal

diffusivity, and k is the thermal conductivity. The temperature in-
crease at a point (x,y,z, t) is then found by integrating from O to t.

(1)

The MOI may then be used to adapt the solution from one over an
infinite domain to one over a finite domain with insulating and
Dirichlet boundary conditions, where % and T are assigned,
respectively, by placing equivalent fictitious sources to absorb or
reflect the heat.

Consider an orthogonal domain with dimensions of B, D and L in
the x, y and z directions, respectively. Cole et al. [11] demonstrated
that the 1D Green's function for insulating boundary conditions
(8G/dx = 0, at x = 0 and x = B) is given by Equation (2), and the 1D
Green's function for dG/dx = 0 at x =0 and a Dirichlet boundary
condition at x = B is given by Equation (3).
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For a three dimensional domain with insulating boundary condi-
tions on all faces except a Dirichlet boundary condition on the x = B
face the three dimensional Green's function may be found by
multiplying the appropriate 1D functions and is shown in Equation

(4).
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