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Abstract

The objective of this work is the development of a numerical solution strategy for energy-based mesh optimization in finite hyperel-
astostatics. In finite element computations that rely on the principle of minimum potential energy, the variational principle itself provides
the basis for r-adaptive methods. The numerical solution can be improved by further minimizing the discrete potential energy with
respect to the material node point positions. In this paper, we regard the mesh optimization as a nonlinear minimization problem with
equality and inequality constraints. The equality constraints correspond to the spatial equilibrium condition, whereas the inequality con-
straints are given by the natural restriction that material elements with a negative volume (Jacobian) are inadmissible. Based on this inter-
pretation, we develop a stable numerical solution strategy in which two approaches of nonlinear programming are combined. Applying a
barrier method, the minimization problem is transformed into a sequence of problems without inequality constraints. Each problem of
the sequence is solved by means of a Newton scheme that operates on the constrained surface given by the spatial equilibrium condition.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The numerical solution of a boundary-value problem in
solid mechanics usually relies on a variational represention
of the problem. Throughout this paper, we restrict our-
selves to hyperelastic bodies subjected to conservative sur-
face traction and volume forces. For such problems, the
principle of minimum potential energy represents a suitable
variational formulation. The variational problem and the
associated boundary-value problem can be solved numeri-
cally by means of a Ritz method. A Ritz method in which a
finite element approximation of the unknown deformation
is used has the advantage that the underlying variational
principle provides the basis for r-adaptive schemes which
are within this work embraced by the term ‘‘energy-based
mesh optimization’’. Without r-adaptivity, the discrete

potential energy is solely minimized with respect to the spa-
tial node point positions by numerically solving the spatial
equilibrium equations. As a result, one obtains a numerical
solution of the boundary-value problem. To attain a more
accurate solution, an energy-based mesh optimization
scheme further minimizes the discrete potential energy with
respect to the material node point positions.

This paper deals with a pure r-adaptive scheme that is
derived from the definition of the mesh optimization as a
problem of nonlinear programming. We regard the discrete
potential energy as a function of the material and the spa-
tial node point positions which has to be minimized with
respect to both sets of variables. The problem is subjected
to the spatial equilibrium condition, a set of equality con-
straints, and inequality constraints corresponding to the
restriction that material elements with a negative volume
(Jacobian) are inadmissible. Our solution strategy for the
constrained problem combines two approaches of nonlin-
ear programming. Applying a barrier method, the problem
is transformed into a sequence of minimization problems
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without inequality constraints. To solve each problem of
the resulting sequence, we use a staggered scheme, a New-
ton method that operates on the constrained surface given
by the spatial equilibrium condition. The proposed algo-
rithm is based on the assumption that the spatial node
point positions are an implicit function of the material
node point positions. ‘‘Staggered’’ means: The method
alternately solves the equilibrium condition and shifts the
material nodes.

Earlier publications dealing with linear elasticity already
present several solution strategies. Note that although the
system of equations for the computation of the nodal dis-
placements is linear, the minimization of the potential
energy with respect to the nodal positions is a nonlinear
problem. Carroll [1], McNeice and Marcal [2], Felippa
[3,4], Bathe and Sussman [5,6] use staggered schemes,
steepest descent, conjugate gradient (cg) or derivative free
methods. Carpenter and Zendegui [7] propose a cg method
that determines the nodal positions and displacements
simultaneously. Concerning the mesh distortion, the algo-
rithms used in [4,7] also include measures that prevent
the nodal positions from leaving the feasible region. A pre-
cise formulation of the underlying problem of nonlinear
programming is given in [3], and an explicit expression
for the gradient of the discrete potential energy with respect
to the nodal coordinates is specified in [5,6].

The relation between configurational mechanics and
energy-based mesh optimization for finite elasticity was
first pointed out by Braun [8]. He shows that the gradient
of the discrete potential energy with respect to the material
node point positions can be expressed in terms of the
Eshelby stress tensor. Therefore, he denotes the compo-
nents of the gradient associated with the nodes as discrete
configurational forces. Mueller et al. [9–11] investigated
the application of configurational node point forces in
the context of r,h-adaptivity, fracture mechanics and inho-
mogeneities. As a solution strategy for the r-adaptivity,
they use a staggered steepest descent method, i.e. the mate-
rial node points are shifted in the opposite direction of the
configurational node point forces.

In the context of finite elasticity, energy-based mesh
optimization was further investigated by Thoutireddy and
Ortiz [12,13]. They use a staggered cg method and incorpo-
rate connectivity changes of the mesh to improve the per-
formance of their scheme. The work of Thoutireddy was
pursued by Mosler and Ortiz [14]. Focussing on the numer-
ical implementation, they propose a simultaneous solution
strategy based on the viscous regularization of the configu-
rational forces and develop strategies for optimizing the
mesh connectivity and allowing node migration in and
out of the boundary. In the two-part publication of Kuhl,
Askes and Steinmann [15,16], the considered r-adaptivity is
embedded into a variational ALE formulation for finite
elasticity. Therein, the variational formulation is derived
from the principle of stationary potential energy. The finite
element discretization of the variational formulation ren-
ders two coupled systems of equations which correspond

to the derivatives of the discrete potential energy with
respect to the spatial and material node point positions.
To solve the resulting equations, the authors propose stag-
gered and simultaneous Newton schemes.

This paper is structured as follows. In Section 2, we
briefly reiterate the essential kinematics of nonlinear con-
tinuum mechanics. Section 3 outlines the problem and
the variational principle for its numerical analysis. The
construction of a finite element approximation for the spa-
tial deformation and its usage in the framework of a Ritz
method is the main topic of Section 4. Section 5 is con-
cerned with the concept of energy-based r-adaptivity.
Thereby, we focus on the definition of the underlying prob-
lem of nonlinear programming, a minimization problem
subjected to equality and inequality constraints. The clear
definition of the problem narrows down the search for a
suitable numerical procedure. Section 6 is divided into 3
subsections: First, two approaches of nonlinear program-
ming, one for each of the two constraints, are discussed.
Then, we illustrate the resulting algorithm, a combination
of the selected schemes. In Section 7, two numerical exam-
ples, a cracked specimen and a plate with hole, show the
performance of our solution strategy. A discussion in Sec-
tion 8 completes the paper.

2. Kinematics

In order to introduce terminology and notation, we
briefly reiterate some key issues concerning kinematics, bal-
ance laws, the variational formulation and the discretiza-
tion. For detailed information about the named topics we
refer to [17–20]. In nonlinear elastostatics the time-inde-
pendent spatial motion of a body is described by the defor-
mation map

u : B0 ! Bt; i:e: x ¼ uðXÞ; ð1Þ

see Fig. 1. The function u(X) maps each point X of the
stress free material configuration B0 � E3 to a point x of
the spatial configuration Bt � E3, where E3 denotes the
three dimensional Euclidean space. Since the spatial defor-
mation map u(X) is assumed to be one-to-one, an inverse
mapping exists

UðxÞ : Bt ! B0; i:e: X ¼ UðxÞ; ð2Þ

a b

Fig. 1. Kinematics and boundary-value problem.
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