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a b s t r a c t

We consider conjugate heat transfer between two conductive and conforming media, with isothermal
boundary conditions on the exposed surfaces, and continuity of the temperature and the heat flux along
their interface. We address the inverse problem of finding the shape of the interface such that the heat
transfer rate is maximized. We formulate three isoperimetric, shape optimization problems associated
with three different applications: i) the optimal shape of corrugations (surface “roughness”), ii) the
optimal shape of high conductivity inserts (inverted fins) and iii) the optimal shape of high conductivity
fins. As expected, the optimal geometries have the shape of an extension of the high conductivity ma-
terial into the low conductivity material. For the case of corrugations and inserts, the optimum shapes are
triangular for small perimeters; for large perimeters and thick slabs they are elliptical and tend to cover
the whole width/period of the domain. Optimum fins are characterized by long, shallow valleys and
deep, narrow protrusions of the high conductivity material. For the parameters considered in this study,
the width of the protrusion is approximately one quarter of the period.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

In our work we consider heat transfer in a composite wall which
consists of two different materials in series (Fig. 1). For a flat
interface the heat conduction is one-dimensional and the heat
transfer problem can be addressed using the concept of thermal
resistance to obtain the heat transfer rate. Basically, the analysis
assumes one-dimensional heat conduction in each layer�
d2T=dx2 ¼ 0

�
, and conjugate heat transfer across layers, i.e. it re-

quires continuity of temperature and flux across the interface of the
two materials/media:

T1 ¼ T2 and k1
vT1
vx

¼ k2
vT2
vx

:

If one of the media is a fluid, then the analysis would require to
apply the convection-diffusion equation in this particular medium
instead of d2T=dx2 ¼ 0. However, the convection problem is
simplified by modeling convection as a boundary condition to the

conduction problem. This is achieved by assuming that the heat
flux is proportional to the temperature difference between the
surface and the far field [1], i.e.

k
vT
vn

¼ h
�
T∞ � Tsurface

�
; (1)

where the convection heat transfer coefficient (h) is assumed
constant and obtained independently by analytical, numerical and
experimental methods. The above analysis can be easily extended
to radial and spherical systems, and it can also provide approximate
results for two-dimensional configurations when, for example, the
composite wall involves parallel layers of different materials.
Furthermore, it is standard textbook approach to use one dimen-
sional approximation to develop the governing heat transfer
equations associated with extended surfaces [1]. The one-
dimensional approach has been also used to obtain the optimal
shape of extended surfaces/fins [2e4]. However, it is established in
the literature that a one-dimensional heat transfer approximation,
when the underlying heat transfer process is two-dimensional,
conceals some very interesting phenomena: the existence of a
critical thickness for planar configurations [5,6], the existence of a
critical Biot number associated with extended surfaces [7e9], and
the existence of a critical depth [6,10,11] associated with buried
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pipes.
While direct problems deal with the solution of a governing

partial differential equation associated with a certain process, i.e.
the Laplace equation with appropriate boundary conditions in the
case of heat conduction [12], in inverse problems the relevant
partial differential equation appears as a constraint to an optimi-
zation problem. For example, inverse problems dealing with heat
conduction can be associated with the estimation of an unknown
boundary heat flux by using temperature measurements taken
below the boundary surface. Another example is the determination
of the boundary conditions, the physical properties, the geomet-
rical configuration of the heated body and the heat flux, by knowing
the temperature distribution on some part of the boundary of the
heat conducting body [13,14]. The objective function is the differ-
ence between the computed temperature and the measured/pre-
scribed temperature [15,16]. In Refs. [15,16], the authors used a
body-fitted grid generation to map the unknown optimal shape
onto a fixed computational domain, where the heat conduction
problem was solved using finite differences, and an efficient
sensitivity analysis that is expressed explicitly in the fixed
computational domain. Finally, the Conjugate Gradient method is
used to minimize the objective function. A similar approach was

used by Cheng et al. [17,18], however they have included convection
heat transfer.

While in the Shape Optimization problems mentioned above,
the unknown shape has a predefined configuration, for example a
simply connected domain, the more general case where the design
can attain any form in the design space, as it allows changes not
only in shape but also in the topology of the target structure, is the
subject of Topology Optimization [19e26]. The most popular
method used in Topology Optimization problems, is the level-set
method [27]. Topology Optimization problems, and in general in-
verse problems, are typically ill-posed because of their sensitivity
to random errors in the measured data and/or in the numerical
solution of the underlying partial differential equation, especially if
the inverse problem involves the estimation of a large number of
parameters. To overcome this problem a regularization (Tikhonov
regularization) [28,29] or a homogenization [30] method is often
used.

Inverse shape optimization problems are usually solved using a
parameter estimation approach by assuming a functional form for
the unknown shape, e.g., isogeometric analysis [31], mesh-
morphing [32], eigenfunction expansion [13], boundary control
points [33] and adaptive mesh [34]. Similar to [15e18], where the
physical domain is mapped onto a fixed computational domain,
another approach that was successful in obtaining optimal shapes
that maximize the heat transfer is to use conformal mapping
techniques [6,7,35e39]. The Shape Optimization problem is
formulated as a nonlinear programming problem (constrained
nonlinear optimization), i.e. find the constrained extremum of a
scalar function of several variables, where the variables are the
parameters of the generalized Schwarz-Christoffel transformation.
The Shape Optimization problem mentioned above is solved
numerically using the NLPQL code developed by Schittkowski [40],
which uses a special implementation of a sequential quadratic
programming (SQP) method. To generate a search direction a
quadratic subproblem is formulated and solved. The line search can
be performed with respect to two alternative merit functions, and
the Hessian approximation is updated by a modified BFGS formula
[41].

As mentioned in the beginning, in this work wewill address the
problem of finding the optimal interface between two conductive
media. We will assume that the exposed sides are isothermal and
that along the polygonal interface the two media are in perfect

Nomenclature

H thickness of the composite wall (dimensionless)
H1 thickness of medium 1 (lower medium)

(dimensionless)
h convection heat transfer coefficient

�
W=

�
m2 K

� �
k thermal conductivity (W/(m K))
P perimeter of the interface (dimensionless)
L periodic length of the geometry (m); Length scale

used for non-dimensionalization
S shape factor (dimensionless)
T temperature (dimensionless)
x; y coordinates of the physical plane (dimensionless)

Greek symbols
l ¼ k1=k2ratio of conductivities of the two media

Fig. 1. Schematic representation of the problem and boundary conditions. All variables are non-dimensionalized with the period, hence the non-dimensionalized period is 1 (one).
The normal vector is denoted as n!. The shape of the periodic interface is assumed unknown and we seek the shape that maximizes heat transfer. Note that the interface is
discretized in line segments.
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