Contents lists available at ScienceDirect

Catalysis Communications

journal homepage: www.elsevier.com/locate/catcom

Short communication

Preparation and characterization of TiO₂-nanotube/Ti plates loaded Cu₂O nanoparticles as a novel heterogeneous catalyst for the azide-alkyne cycloaddition

^a Electrochemistry Research Laboratory, Department of Physical Chemistry, Chemistry Faculty, Urmia University, Urmia, Iran

ARTICLE INFO

Article history: Received 3 November 2015 Received in revised form 19 December 2015 Accepted 4 January 2016 Available online 7 January 2016

Keywords. TiO₂ nanotubes Cu₂O nanoparticles Anodizing of titanium Azide-alkyne cycloaddition

1. Introduction

The copper(I)-catalyzed Huisgen [3 + 2] dipolar cycloaddition (CuAAC) between organic azides with alkynes has arguably become the most popular ligation reaction that has been widely applied in a variety of chemical disciplines including organic synthesis, the modification of biological macromolecules and in polymer and materials chemistry [1-10]. Because the recycling of the recovered catalyst in successive reuses allows processes interesting from an economical point of view, much attention has been paid to the development of heterogeneous copper(I) catalytic systems for CuAAC reactions [11–16].

The mesoporous properties of plate as substrate can significantly affect microstructures of Cu₂O, leading to low size and therefore high active catalyst surface which can improve the performance of Cu₂O as catalyst. Among various types of plates, TiO2-NTs/Ti fabricated by anodizing of titanium plate can be used as a suitable substrate because of its high surface area, thermal stability, controlled pore structure, relatively low cost and especially the excellent reusability relative to other powdery TiO₂ nanomaterials [17,18]. The results of our previous works have confirmed that the TiO₂-NTs/Ti plates having high surface area can be used as appropriate substrate for deposition of various types of materials at electrocatalysts, photocatalysts and supercapacitors [19–21].

* Corresponding authors.

In this work, Cu₂O-NPs/TiO₂-NTs/Ti plates were fabricated via electrodeposition of Cu₂O nanoparticles onto TiO₂ nanotubes fabricated by anodizing of titanium. The properties of fabricated plates were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The catalytic activity of Cu₂O-NPs/TiO₂-NTs/Ti plates was examined in the azide-alkyne cycloaddition and the experimental results were discussed (Scheme 1). To the best of our knowledge, this work is the first report about electrodeposition of Cu₂O nanoparticles on the TiO₂-NTs/Ti plates for catalytic applications.

2. Experimental

2.1. Preparation of the Cu₂O-NPs/TiO₂-NTs/Ti plates

Titanium dioxide nanotubes were grown on stripes of Ti plate (99% purity) with a geometric area of 9 cm². Very briefly, Ti stripes were polished with emery papers no 400 to 3000 to obtain a mirror finish and subsequently cleaned in acetone and deionized water in an ultrasonic bath. The cleaned samples were anodized at 40 V for 2 h in ethylene glycol containing 0.5 wt.% ammonium fluoride and 2.5 wt.% of water at room temperature in a two-electrode cell using a platinum foil as a counter electrode. The anodized samples were further washed with deionized water and ultrasonically cleaned for 60 s in deionized water to remove surface debris and subsequently dried in air. The anodized samples were annealed at 450 °C for 2 h to form the anatase phase. The growth of nanotubes by anodizing of titanium can be described as a

^b Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box. 55181-83111731, Maragheh, Iran

ABSTRACT

Cu₂O-NPs/TiO₂-NTs/Ti plates were fabricated via electrodeposition of Cu₂O nanoparticles on TiO₂ nanotubes previously formed by anodizing of titanium. Microstructure studies show that nanoparticles of Cu₂O having high surface area have been deposited on the walls of as-prepared TiO₂ nanotubes. The catalytic activity of plates was tested for azide-alkyne cycloaddition. The results of catalytic experiments demonstrate that the Cu₂O-NPs/TiO₂-NTs/Ti plate exhibits significantly enhanced catalytic activity for the azide–alkyne cycloaddition. © 2016 Elsevier B.V. All rights reserved.

E-mail addresses: ma.faraji@urmia.ac.ir (M. Faraji), mamini@maragheh.ac.ir (M. Amini).

selective etching, and the method can be related to a top down approach. In the simplest approach, such nanotube growth can be described in terms of a competition between several electrochemical and chemical reactions including: anodic oxide formation:

$$Ti + 2H_2O \rightarrow TiO_2 + 4H^+ + 4e \tag{1}$$

chemical dissolution of the titanium oxide as soluble fluoride complexes, e.g.:

$$TiO_2 + 6F^- + 4H^+ \rightarrow [TiF_6]^{-2} + 2H_2O$$
 (2)

and direct complexation of Ti⁺⁴ ions migrating through the film:

$$Ti^{+4} + 6F^{-} \rightarrow [TiF_6]^{-2}$$
. (3)

Reaction in Eq. (1) describes the oxide growth on an anodized metal surface in a fluoride-free electrolyte. Firstly, a layer of anodically formed oxide is formed. Further oxide growth is controlled by the migration of O^{-2} and Ti⁺⁴ ions through the growing oxide film. As the system is under a constant applied voltage, the electric field within the oxide is progressively reduced by the increasing oxide thickness; the process is self-limiting [22,23].

Electrochemical reduction of Cu₂O onto the annealed TiO₂-NTs/Ti plates was carried out potentiostatically at a constant potential of -0.4 V vs. SCE electrode for the duration of 1000 s in a threeelectrode cell using TiO₂-NTs/Ti plate as a working electrode, Pt as a counter electrode and a saturated calomel (SCE) as a reference where the electrolyte was 0.4 mol· l^{-1} copper sulfate and 3 mol· l^{-1} lactic acid solution. Bath composition and electrodeposition conditions are given in Table 1. The yellow colored, homogeneous and adherent Cu₂O film were successfully obtained on the TiO₂-NTs/Ti plates and denoted as Cu₂O-NPs/TiO₂-NTs/Ti plates. After the electrodeposition, the plates were immediately removed from the electrolyte and sequentially rinsed with DI water. The obtained Cu₂O-NPs/TiO₂-NTs/Ti plates were then annealed at 200 °C for 60 min in nitrogen atmosphere. The weights of the plates were measured by a microbalance. The mass of Cu₂O-NPs deposited on a plate was about 0.05 g. Surely, error of around \pm 5% is expected. The electrodeposition mechanism for the formation of Cu₂O can be explained through the electrogeneration of base route [24–26]. According to the pourbaix diagram relating to Cu–H₂O, at -0.4 V vs. SCE electrode, the measured cathodic current can be sustained by the following reduction process:

$$Cu^{+2} + e^{-} \leftrightarrow Cu^{+}. \tag{4}$$

The Cu⁺¹ ions present in the solution migrate to the cathode to form copper hydroxide:

$$Cu^+ + OH^- \rightarrow Cu(OH).$$
 (5)

Scheme 1. Cycloaddition of alkyl halides with phenyl acetylene and NaN₃.

Table 1

The optimized bath composition and electroplating conditions.

Bath composition	Concentration $(mol \cdot l^{-1})$	Electroplating conditions
Copper sulfate Lactic acid	0.4 3.00 For adjusting of pH For adjusting of pH	T = 35 °C
H₂SO₄ KOH		pH = 11
		Counter electrode: Pt(6 cm ²)
		Potential: -0.4 V vs. SCE
		Electrodeposition time: 1000 s

Fig. 1. SEM images of bare TiO_2 -NTs/Ti plate (a), Cu_2O -NPs/Ti O_2 -NTs/Ti plate (b) and EDX spectra obtained of Cu_2O -NPs/Ti O_2 -NTs/Ti plate as well as elemental analysis maps for Cu (c).

Download English Version:

https://daneshyari.com/en/article/49952

Download Persian Version:

https://daneshyari.com/article/49952

Daneshyari.com