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a b s t r a c t

In this paper, a random field model based on nodal integration domain is presented to solve stochastic
heat transfer problems. In the proposed model, the uncertainty of the inputs are considered as random
field, which is discretized into a number of node-based subdomains and the properties of the un-
certainties under random field can be considered at the nodes. The proposed method is efficient to model
non-uniform material under random field with constitutive equation, meanwhile, the random field with
arbitrary geometry can be simulated conveniently and efficiently by using the Karhunen-Lo�eve expan-
sion truncated in this work. The statistical moments of the structural responses using the perturbation
method is also performed and compared with the solutions of Monte Carlo simulation. The proposed
method is successfully applied to the steady-state heat transfer problem with spatially varying random
material parameter introduced in the thermal conductivity in this work. Finally, we demonstrate the
accuracy and performance of the proposed method through a series of numerical examples both in 2D
and 3D steady-state heat transfer problems under different random fields.

© 2017 Published by Elsevier Masson SAS.

1. Introduction

Thermal analyses have made great progress in many works
[1e10] but most under the assumption that the properties and
boundary conditions are deterministic. Therefore, it's limited to
describe the general characteristics of a system. In particular, it
cannot directly study a system reliability where there exists some
degree of uncertainty. In reality the parameters can be truly
random due to heterogeneity of the material or variations in time
or a reflection of our uncertain knowledge about their solicitations,
such as potential thermal gradients or pressure loads. Therefore, it
is reasonable to treat materials, boundary conditions, geometry
sizes and external loads as stochastic parameters and formulate the
uncertain analysis, especially in the precise reliable problems.

Previous models of stochastic heat transfer problems have been
discussed in which the thermal conductivity is spatially random
[11,12], the internal heat generation has spatial or temporal
randomness [13,14], the boundary conditions or the initial condi-
tions vary randomly [15,16] and the shape and material properties

[17,18] are random, etc. In recent years, the concept of stochastic
simulation techniques are being used for the analysis of heat
transfer and thermoelastic problem due to the fact that stochastic
thermal analysis is more necessary to maintain the reliability and
safety gain in the design of high-temperature devices or heat
resistant structures. Therefore, it appears to be more realistic. Sto-
chastic finite elementmethod [19], which combines the classic FEM
and other methodologies, has been developed and grown in
importance over time.Monte Carlo simulation (MCs) is the simplest
and versatile probabilistic method in the framework of stochastic
methods which requires the most computational power. Even so,
MCs is widely accepted and is often used to validate the pertur-
bation method and the spectral stochastic finite element method
(SSFEM) [20]. The perturbation method is another popular branch
of the stochastic finite element method which uses Taylor series
expansions to introduce randomness into the system and estimates
the influence of the mean, standard deviation and covariance of
response variables of a structure [21,22]. The spectral stochastic
finite element method [23,24] which uses the Karhunen-Lo�eve
expansion or polynomial chaos expansions is mainly concerned
with representing the random material properties of a structure.
The SSFEM can provide an efficient means of calculating statistical
moments (e.g. mean and variance) and probability distributions
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associated with the probabilistic behavior of a structure, and its
computational efficiency is in some cases greater than that of MCs,
therefore it would be suitable as an alternative to Monte Carlo
simulation for assessing structural reliability.

The SSFEM have received more attention recently, Since its early
inception, further developments in efficient algorithms, capabilities
and performances of the original SSFEM have been developed and
extended for stochastic problems in recent years [25e27]. These
studies have inspired the improvement of a reliable computational
procedure in terms of uncertain modeling for different parameters
in SSFEM. Indeed, most of the stochastic finite elementmethods are
based on the traditional FEM. However, the FEM always provide a
poor accuracy when low-order linear element is used andwhen the
element mesh is heavily distorted. In order to cure these defects,
many modified numerical algorithms based on the finite element
framework have been developed and have made great progress
[28e37]. A class of smoothed FEM models have been developed on
the base of the gradient smoothing technique, such as the
smoothed finite element method [38e41], the node-based
smoothed finite element method (NS-FEM) [42e47], the edge-
based smoothed finite element method (ES-FEM) [48e51], the
face-based smoothed finite element method (FS-FEM) [52], and the
stable node-based smoothed finite element method (SNS-FEM)
[53e55].

Suitable random model corresponding to real stochastic engi-
neering problems is still an open problem, meanwhile, the effi-
ciency in modeling uncertainties is also a profound topic in solving
stochastic heat transfer problem. When there is a relatively strong
correlation between the material properties in two adjacent points,
it is desirable to consider the material property of each discrete
subdomain as a random variable that can be defined as the value of
the KL expansion at the center x

�
of this subdomain, fortunately, the

centroid x
�
of the subdomain Us

k is just at the node k in the NS-FEM.
It is more convenient than some other similar numerical schemes
in terms of FEM which need to get the centroid of each subdomain,
for example, the scaled boundary finite element method combined
with the random field theory [56]. Hence, it provides an effective
way to combine the NS-FEM with the random field theory. In this
paper, a random field model based on nodal integration domain is
proposed for stochastic analysis of heat transfer problems. This
random field is constructed by discreting the analyzed random
domain into a number of node-based subdomains. Using gradient
smoothing technique over the cells associated with nodes (i.e., NS-
FEM), line integrations along the edges of the cells is performed and
no limitation of elements used herein, then the properties of the
nonuniformmaterial can be considered at the nodes which is more
efficient and simpler when representing the random field and
establishing the constitutive equation. The proposed method is
efficient to model non-uniform material under random field with
constitutive equation, meanwhile, the random field with arbitrary
geometry can be simulated conveniently and efficiently by using
the Karhunen-Lo�eve expansion truncated in this work. The statis-
tical moments of the structural responses using the perturbation
method is also performed and compared with the solution of
Monte Carlo simulation in this work. So the present method has the
large potential to apply into reliability analysis.

In this paper, the proposed method is applied to deal with the
stochastic steady-state heat transfer problems with random ther-
mal conductivity. A schematic of the general procedure of the
proposed method is depicted in Fig. 1. The remainder of this paper
is organized as follows. Section 2 describes the basic theory of the
steady-state heat transfer problems and the discretization of
random field using NS-FEM; Section 3 shows the representation of
the random field using Karhunen-Lo�eve expansion; Sections 4
represents the perturbation method for statistical analyses;

Section 5 provides the analyses of four numerical examples.

2. Discretized system equations

2.1. Standard Galerkin weak form

In this work, the gradient smoothing technique is formulated for
steady-state heat transfer problems without considering thermal-
mechanical coupling and inertia. The governing equation and
boundary conditions represented by the tensor notation are [57]:�
kijT;j

�
;i þ Qv ¼ 0 Problem domain studied (1)

T ¼ T0 Initial condition (2)

T ¼ TG Dirichlet boundary (3)

�nikijT;j ¼ q Neumann boundary (4)

�nikijT;j ¼ hðT � TaÞ Robin boundary (5)

nikijT;j ¼ 0 Adiabatic boundary (6)

where kij is the thermal conductivity,Qv is internal heat source, T0 is
the initial temperature of the domain, TG is the temperature on the
boundary of domain, ni is component of the unit outward normal to
the boundary, q is the prescribed heat flux, h is the convective heat
transfer coefficient and Ta is the temperature of surrounding
medium.

The standard Galerkin weak form can be writted as:

Z
U

ðLdTÞT
2
4 kx 0 0

0 ky 0
0 0 kz

3
5ðLTÞdU�

Z
U

dTTQdUþ
Z
G2

dTTqdG

þ
Z
G3

dTThðT � TaÞdG

¼ 0 (7)

where L is a differential operator in the following form:

L ¼
�

v
vx

v
vy

v
vz

�T
(8)

In the above Galerkin weak form Eq. (7), the temperature field T
can be expressed in an approximate form:

T ¼
Xm
i¼1

NiTi (9)

where Ti is the temperature at the node i, Ni is the shape function.
Substituting Eq. (9) into Eq. (7), we can obtain the following
expression:
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NTQdU ¼ 0

(10)

The discretized system equilibrium equation can be finally
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