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a b s t r a c t

The instability of natural convection in a vertical porous layer is analysed. The plane parallel boundaries
of the vertical layer are modelled as open and subject to Robin-type temperature conditions. The latter
conditions describe heat transfer to the external environment, with a finite conductance. The basic state
is given by a stationary fully-developed flow with linear velocity and temperature profiles. Instability
arises when the Darcy-Rayleigh number exceeds its critical value. This value depends on the Biot number
associated with the temperature boundary conditions. The most unstable normal modes turn out to be
transverse. By solving numerically the stability eigenvalue problem, it is shown that the critical Darcy-
Rayleigh number is a decreasing function of the Biot number when the Biot number is sufficiently
small. For larger Biot numbers, a minimum is attained, and then the critical Darcy-Rayleigh number
becomes an increasing function of the Biot number.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

Stationary free convection in a vertical porous layer with infinite
height may take place in the form of a parallel bidirectional flow
with linear velocity and temperature profiles. In the usual formu-
lation, the boundaries of the layer are impermeable, with unequal
uniform temperatures T1 and T2. With this setup, the stationary
parallel flow has a vanishing mass flow rate, thus describing a
single convective cell spread all over the infinite height of the layer.
A classical paper by Gill [1] presents a rigorous proof that this
stationary buoyant flow is linearly stable. A numerical evaluation of
the growth rates was carried out later on by Rees [2] and by Lewis
et al. [3]. The role played by local thermal non-equilibrium between
the phases was investigated by Rees [4], while the effects of
nonlinearity were analysed by Straughan [5] and Scott and
Straughan [6]. Barletta and Alves [7] pointed out that the linear
stability proved by Gill holds true also for non-Newtonian fluids
subject to a power-law rheology.

In a recent paper [8], the proof of stability drawn in Gill's paper
is shown to be ineffective if the velocity boundary conditions are
altered by assuming the boundaries as permeable. This change in

the boundary conditions turned out to induce a linear instability
occurring when the Darcy-Rayleigh number, R, is larger than
197.081 [8]. The instability selects transverse modes as the
preferred patterns at onset meaning that the single-cell basic flow
breaks up into a two-dimensional multicellular flow. These results
were further extended to the case where a pressure difference
exists across the vertical porous layer [9]. The pressure difference
results into a two-dimensional basic flow instead of the one-
dimensional parallel flow studied both in the original Gill's proof
[1] and in Barletta [8].

Third-kind, or Robin, boundary conditions were invoked by
several authors as a model of convection to an external environ-
ment. Kubitschek andWeidman [10,11] tested the effects of the Biot
number on the onset of Rayleigh-B�enard instability in a horizontal
porous layer. These authors employed the Biot number to model
boundary heat transfer due to an external forced convection
regime.Wemention that, formally, the same Robin conditions were
used also to describe the effects of the conductance of bounding
walls having a finite thickness (see, for instance, Chelghoum et al.
[12]). However, Mojtabi and Rees [13] and Rees and Mojtabi [14]
proved that this use of the Robin boundary conditions may be
inappropriate as, strictly speaking, the Biot number would turn out
to be dependent on the wave number of the perturbation.

The aim of this contribution is to further extend the scope of the
analysis carried out by Barletta [8] on replacing the isothermal
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conditions at the boundaries with third-kind (Robin) boundary
conditions for the temperature. In this way, convection to the
external environment is modelled through a uniform heat transfer
coefficient he. The dimensionless counterpart of this coefficient is
the Biot number, B. When the Biot number tends to infinity, the
Dirichlet temperature boundary conditions assumed by Gill [1] and
Barletta [8] are recovered. Also the condition of vanishing mass
flow rate in the basic state is relaxed, thus allowing for a buoyancy-
induced upward or downward flow. This effect will be set up by
allowing the reference temperature employed to define the buoy-
ancy force to be lower or higher than the arithmetic mean
ðT1 þ T2Þ=2.

2. Mathematical model

This study is focussed on the natural convection in a vertical
porous layer. The boundaries are a pair of parallel vertical planes at
x ¼ ± L=2 where convection to external fluid reservoirs at given
temperatures T1 and T2, with T2 > T1, takes place (see Fig. 1). The
ðx; y; zÞ�axes are oriented as shown in Fig. 1.

2.1. Governing equations

Fluid flow through the porous medium is modelled by invoking
Darcy's law, and by assuming that the Oberbeck-Boussinesq
approximation can be applied. We will consider the effect of
viscous dissipation as negligible, andwewill assume the absence of
internal heat sources. It is further assumed that the hypothesis of
interphase thermal equilibrium can be applied locally within the
fluid saturated porous medium. Under these assumptions, the local
mass, momentum and energy balance equations can be expressed

in a dimensionless form as [15,16],

V$u ¼ 0; (1a)

u ¼ �Vpþ RT ey; (1b)

vT
vt

þ u$VT ¼ V2T ; (1c)

where R is the Darcy-Rayleigh number and ey is the unit vector of
the y�axis. A suitable rescaling of the dimensional quantities has
been defined so that the corresponding dimensionless quantities
are obtained,

1
L
ðx; y; zÞ/ðx; y; zÞ; a

sL2
t/t;

K
ma

p/p;

L
a
u ¼ L

a
ðu; v;wÞ/ðu; v;wÞ ¼ u;

T � T0
T2 � T1

/T : (2)

Here, we have denoted time by t, dynamic pressure by p, seepage
velocity by u ¼ ðu; v;wÞ, and temperature by T. Moreover, K is the
permeability, m is the dynamic viscosity, a is the average thermal
diffusivity, s is the ratio between the average volumetric heat ca-
pacity of the saturated porous medium and the volumetric heat
capacity of the fluid, while T0 is the reference temperature. We
recall that dynamic pressure is the difference between the pressure
and the hydrostatic pressure evaluated locally within the medium.

The Darcy-Rayleigh number R and the temperature difference
ratio are given by

Nomenclature

B Biot number, Eq. (5)
ey unit vector relative to y-axis
f ðxÞ rescaled dimensionless perturbation amplitude, Eq.

(24)
FðxÞ dimensionless perturbation amplitude, Eq. (10)
g modulus of the gravitational acceleration ½m=s2�
g gravitational acceleration ½m=s2�
he external heat transfer coefficient ½W=ðm2 KÞ�
HðxÞ dimensionless perturbation amplitude, Eq. (10)
k dimensionless wave number
ðky; kzÞ dimensionless wave vector
K permeability ½m2�
L porous layer thickness ½m�
p dimensionless pressure, dimensional pressure [Pa], Eq.

(2)
P Pecl�et number
R Darcy-Rayleigh number, Eq. (3)bR dimensionless parameter, Eq. (27)
S rescaled Darcy-Rayleigh number, Eq. (13)bS dimensionless parameter, Eq. (22)

Sc;min;
bSc;min minimum values of Sc, bSc

t dimensionless time, dimensional time ½s�, Eq. (2)
T dimensionless temperature, dimensional temperature

½K�, Eq. (2)
T0 reference temperature ½K�
T1 external left reservoir temperature ½K�

T2 external right reservoir temperature ½K�
u dimensionless velocity, ðu; v;wÞ, dimensional velocity

½m=s�, Eq. (2)
vm basic flow dimensional average velocity ½m=s�, Eq. (29)
vpy perturbation dimensional phase velocity ½m=s�, Eq. (29)
x dimensionless position, ðx; y; zÞ, dimensional position

½m�, Eq. (2)

Greek symbols
a average thermal diffusivity ½m2=s�
b thermal expansion coefficient ½K�1�
g dimensionless parameter, � hþ i bu
ε dimensionless perturbation parameter, Eq. (7)
h dimensionless growth rate, Eq. (10)
q temperature difference ratio, Eq. (3)
m dynamic viscosity ½Pa s�
n kinematic viscosity ½m2=s�
x1;2 dimensionless real parameters, Eq. (17)
s heat capacity ratio
c average thermal conductivity ½W=ðm KÞ�
u dimensionless angular frequency, Eq. (10)bu rescaled dimensionless angular frequency, Eq. (12)

Subscripts, Superscriptse perturbed quantities
0 derivative with respect to x-coordinate
b; c basic state, critical value
max modes of maximum growth rate
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