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a b s t r a c t

This paper presents two iterative algorithms used to solve the inverse problem of gas-turbine blade
cooling. First of them was obtained by variational calculus methods, and the second one is reduced to
solving the least-square approximation problem. To determine the temperature distribution on the inner
boundary of the blade (of the multiply-connected region), a combination of trigonometric functions
defined on the boundary of a unit circle was used. Both algorithms are presented in two variants: the first
one is about reducing the number of trigonometric functions, and in the second one, coefficients of
trigonometric functions are regularized in the process of iteration. Results of calculations indicate that
both algorithms operate more effectively in the variant where coefficients of linear combination of
trigonometric functions are regularized.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

Problems related to cooling gas-turbine blades are of crucial
importance in power industry as they concern with increasing the
efficiency of turbines, among other things. Temperature of gas
flowing around the blades in the turbine influences significantly on
the efficiency of the turbine, which grows with the increase of the
gas temperature. A major limitation influencing on the increase of
the gas temperature is a material the blade is made of. Increase of
the gas temperature above a certain value results in loss of strength
properties of the material what in turn leads to a damage to the
turbine. To avoid it, protective coatings or blade cooling systems are
used, what allows the gas temperature to increase significantly and
not to cause any damage to the turbine blades. Trends related to
application of cooling channels and protective coatings to the gas-
turbine blades are described in papers [1]. Problems related to
particular solutions of cooling system comprise, among other
things, minimization of thermal stresses as well as the shape and
arrangement of cooling channels inside the blade. Problems of
optimization of the gas-turbine blades cooling process were dis-
cussed in papers [4e8].

Problems of gas-turbine blades cooling optimization are not
typical boundary problems since the boundary condition on the
walls of the cooling channels is not known, and in some problems
the shape of the channel is not defined. Problems of that type
belong to the class of inverse problems ill-posed in the Hadamard
sense [2]. According to the classification of inverse problems pre-
sented in paper [3], inverse problems inwhich there is no boundary
condition on the walls of the cooling channels belong to a group of
problems related to identification of boundary conditions, and
problems in which the shape of cooling channels is not defined
belong to geometric inverse problems.

Methods of solving inverse problems are widely discussed in
literature, just to mention papers [9e13]. An inverse problem being
the subject matter of this paper is the Cauchy problem for the
Laplace's equation. Presented algorithms for solving problems of
that type are based on some mechanisms for improving the solu-
tion to the inverse problem, just as it is in the case of the SVD
(singular value decomposition) algorithm [11] and regularization
[9,12].

Cauchy-type inverse problems are known and solved using
various numerical methods. Papers [14,15] present variational
methods for solving problems of that type. Regularization of the
Cauchy problem is discussed in papers [16e18], just to mention a
few, and iterative algorithms are presented in papers [19e21],
among others.* Corresponding author.
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2. Iterative algorithms for determining temperature
distribution

In the multiply-connected region U, Fig. 1, the following heat
conduction equation is given

DT ¼ 0 (1)

with boundary conditions of the first and third types on the outer
boundary of the multiply-connected region

Gout :
�k

vT
vn

¼ h
�
T � Tf

�

T ¼ To

(2a)

where k [W/mK] is the heat conduction coefficient, h [W/m2K] is
the heat transfer coefficient, Tf [K] is the temperature of the fluid
surrounding the region U from the outside, and To [K] is the tem-
perature on the Gout boundary. Distribution of temperature and the
normal derivative of temperature on the Gin boundary of the
multiply-connected region U should be found (the Cauchy
problem).

Simultaneous fulfilment of conditions (2a) is difficult, therefore
the condition of the third type will be fulfilled exactly, and the
condition of the first type will be fulfilled in the least square sense
as the minimum of the functional

Gout : �k
vT
vn

¼ h
�
T � Tf

�

min
T

Z
Gout

ðT � ToÞ2ds
(2b)

Temperature on the Gin boundary is sought in the form

Gin : T ¼ Pn
i¼0

ci4i (3)

where basis functions fi form a complete system of functions.
Solution of the equation (1) with the boundary condition of the

third type (2) on the Gout boundary and the boundary condition of
the first type (3) on the Gin boundary may be approximated using
the linear combination

U : T ¼ T1 þ
Xn
i¼0

ciji (4)

where the function T1 is the solution of the equation (1) with
boundary conditions:

Gout : �k
vT1
vn

¼ h

 
T1 þ

Xn
i¼0

ciji � Tf

!

Gin : T1 ¼ 0

(5)

and basis functions ji (Trefftz functions, [22]) satisfy the equation
(1) with boundary conditions

Gout :
vji
vn

¼ 0

Gin : ji ¼ 4i

(6)

It may be verified that the function given by the formula (4)
satisfies the equation (1) with the boundary condition of the
third type on the Gout boundary (2) and with the boundary condi-
tion of the first type (3) on theGin boundary. To do so, it is enough to
multiply boundary conditions (6) by coefficients ci, and next to total
up and add to boundary conditions (5)

Gout : �k

 
vT1
vn

þ
Xn
i¼0

ci
vji
vn

!
¼ h

 
T1 þ

Xn
i¼0

ciji � Tf

!

Gin : T1 þ
Xn
i¼0

ciji ¼
Xn
i¼0

ci4i

Unknown coefficients ci will be determined from the minimum of
functional expressing the root-mean-square distance of the solu-
tion in the form (4) on the Gout boundary from the set temperature
To

J½ci� ¼
1
2

Z
Gout

 
T1ðciÞ þ

Xn
i¼0

ciji � To

!2

ds (7)

2.1. Algorithm with variational method

Functional (7) reaches its minimum when its variation accord-
ing to coefficients ci

dJ½ci� ¼
Z
Gout

 
T1ðciÞ þ

Xn
i¼0

ciji � To

! 
dT1 þ

Xn
i¼0

dciji

!
ds (8)

is equal to zero. Variation of the function T1 within the regionU and
on the Gout boundary will be determined from formulae (1) and (5):

U : DdT1 ¼ 0

Gout : �k
vdT1
vn

¼ h

 
dT1 þ

Xn
i¼0

dciji

!

Gin : dT1 ¼ 0

(9)

Multiplying the equation (1) by the function p, and then inte-
grating in the region U as well as using the Green's identity one
obtain after some transformations:

Z
U

kðpDdT1 � dT1DpÞdu ¼
Z

Gout∪Gin

�
pk

vdT1
vn

� dT1k
vp
vn

�
ds (10)

Identity (10) including (9) is as follows:Fig. 1. Multiply-connected region U.
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