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Abstract

Using a connectivity matrix, we establish a continuum modeling approach with partial differential equations of conservation laws for
simulating materials flow in supply chain networks. A number of existing and new constitutive relationships for modeling velocity are
summarized or proposed. To effectively treat strong advection components within the modeling system, we apply discontinuous Galerkin
(DG) methods for solving production flow in a supply chain network. In addition, a number of DG properties are analyzed for treating
network flow. In particular, a nearly optimal error estimate is obtained using a new estimating technique that utilizes two physical mean-
ingful assumptions on the connectivity matrix. Numerical examples are provided to simulate a single node, a serial supply chain and an
entire network as well as to investigate the influence of influx variation and node shut-down to the profiles of work in progress (WIP) and
outflux. It is shown that the proposed modeling approach is applicable to a large number of scenarios including re-entrant lines and the
proposed DG algorithm is robust and accurate for predicting WIP and outflux behaviors.
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1. Introduction

A supply chain can be viewed as a network of suppliers,
manufacturing sites, distribution centers, and customer
locations, through which components and products flow.
A node in a network can be a physical location, a sub-
network, or just an operation process, while links represent
materials (components or products) flow. These networks
find significant applications in manufacturing and logistics
in many fields, such as electronic and automobile industries
[15]. A central problem in integrated supply chain network
design is to model and evaluate the performance of supply
chains. The problem becomes more challenging because of
the dynamic nature of the supply chains: prolific product
variety, short lifetime products, frequent new product intro-
duction, non-stationary customer demand, and frequently

changing service-level requirements. This dynamic nature
of complex supply chains causes the models change over
time. In turn, the performance of supply chains must be
continually reevaluated.

Much progress has been made to characterize the
dynamics of supply chains. Discrete event and agent based
models are routinely developed to study the dynamics of
flows through such networks [13,14]. However, throughout
these networks, there are different sources of uncertain-
ties, including supply (availability and quality), process
(machine break-down, operator variation), and demand
(arrival time and volume). Moreover, these variations will
propagate from upstream to downstream stages. These
uncertainties degrade the performances of a network caus-
ing, for example, longer cycle times and lower fill-rates.
Their effective allocation and control impose a great chal-
lenge to the managers of supply chains. Performance mod-
eling and analysis become increasingly more important but
difficult in the management of such complex supply chains.
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The traditional modeling and analysis methods such as dis-
crete event simulations are prohibitively expensive to main-
tain and are not equipped well to answer questions on the
behavior of the networks as a whole. In particular, discrete
event simulators have increasing numerical complexity as
the number of simulated parts increases, leading to compu-
tationally difficult or even intractable tasks for simulating
high-volume, multistage production flow. Therefore, a con-
tinuum modeling approach to be used for modeling and
performance analysis is in need. Furthermore, to answer
‘‘what-if’’ questions quickly, such a continuum model has
to be computed efficiently.

Classical continuous models for supply chains (see e.g.,
[2]) use rate equations to describe the queueing and flow
process in the system macroscopically. These continuous
approaches can be solved efficiently by numerical computa-
tion, even though they are less exact than discrete event
simulations. They are computational scalable with respect
to the number of parts; in other words, their computational
complexity does not depend on the number of parts to be
processed. Borrowing techniques from gas dynamics, a
continuum modeling approach was established in [3,5] with
compromise made between rate equations and discrete
event simulations. This allows scalable and efficient compu-
tation while being capable of providing more information
than simple rate equations. Similarly, continuous produc-
tion flow through a re-entrant factory was modeled using
a continuum model in [4], where a conservation law was
developed for a continuous density variable and a state
equation was assumed for the speed of the flow along the
production line, allowing fast and accurate simulations.
Existence of solutions for continuous models on a network
has also been analyzed for simple scenarios [17]. Contin-
uum models can be also combined with discrete models
[20] to take the advantage of both approaches, namely
the accuracy offered by discrete models and the scalable
complexity of computation offered by continuum models.
In addition to their efficient computation, continuum mod-
els can be treated with a rich collection of mathematical
tools available for differential equations. For example, a
direct application of multiscale algorithm to the solution
of continuum models can be used to build up a multiscale
analysis of supply chains [33]. Here, unlike discrete models,
the modeling of supply chain networks with continuum
approaches does not explicitly incorporate the number of
parts into the equation system. Consequently, continuum
models or combination of continuum and discrete models
are more suitable for multiscale modeling and cross-scale
computation than the most microscopic discrete simula-
tions. As supply chain networks naturally exhibit multi-
scale behaviors, easy extendability to multiscale modeling
and simulation is obviously an attractive feature.

To solve continuum models, a differential equation sol-
ver is in need. As materials flow in supply chains consists of
mainly advection processes and discontinuous Galerkin
(DG) methods have superior numerical performance for
advection-dominated problems, we utilize DG in this

paper. DG methods [6–10,16,18,19,21–24,26,27,29–32] are
specialized finite element methods that utilize discontinu-
ous piecewise polynomial spaces to approximate the solu-
tions of differential equations, with inter-element
continuities (if diffusion presents) and boundary conditions
weakly imposed through bilinear forms. Derived from var-
iational principles by integration over local cells, the meth-
ods are locally mass conservative by construction. Weak
enforcement of boundary conditions and inter-element
continuities leads to small numerical diffusion and little
oscillation for DG. In addition, the DG methods handle
rough coefficient problems and capture the discontinuity
in the solution very well by the nature of discontinuous
function spaces. For time-dependent problems in particu-
lar, their mass matrices are block diagonal, providing a
substantial computational advantage if explicit time inte-
grations are used. Examples of DG methods include local
discontinuous Galerkin [10,11], Symmetric Interior Penalty
Galerkin (SIPG) [25,28,32], Oden–Babuška–Baumann DG
formulation (OBB-DG) [21], Non-symmetric Interior
Penalty Galerkin (NIPG) [23] and Incomplete Interior Pen-
alty Galerkin (IIPG) methods [12,25,28]. For advection–
reaction problems without diffusion, the above five DG
schemes coincide.

Random variation exists in all production systems, due
to various sources of uncertainties from supply, process
and demand, and it can significantly affect the performance
of supply chains. Incorporation of random processes into
continuum models will result in stochastic partial differen-
tial equation (PDE) systems. In most numerical treatments
for stochastic PDEs, including the implementation-friendly
Monte Carlo method, and the more efficient Karhunen–
Loeve expansion method, the stochastic PDE problem is
approached by solving a number of associated determinis-
tic PDEs. Consequently, deterministic PDE modeling and
algorithms are of interest even for intrinsically stochastic
systems. In this paper, we restrict our attention to deter-
ministic PDE modeling of supply chains and its efficient
solutions. Extension of this study to stochastic PDE mod-
eling is currently under progress, and it will be presented
elsewhere.

The paper is organized as follows: In the following sec-
tion, we formulate the continuum modeling equations for
supply chain networks. Here we first establish the mass
conservation equation to model a single node in a supply
chain network and formulate various constitutive equa-
tions for the velocity. We then extend this framework to
a serial supply chain and to an entire supply network with
a new tool of connectivity matrices. In Section 3, we pro-
pose discontinuous Galerkin methods for the numerical
treatment of the modeling system and analyze various algo-
rithmic properties of the proposed algorithm for solving an
entire supply chain network. These algorithmic properties
include consistency, existence of a solution, element-wise
conservation, and convergence. To our knowledge, the
error analysis of DG here for a PDE system equipped with
a connectivity matrix is new. Section 4 is devoted to
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