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a b s t r a c t

The two-dimensional problems of an elliptic hole or a rigid inclusion embedded in a thermoelectric
material subjected to uniform electric current density and energy flux at infinity are studied based on the
complex variable method of Muskhelishvili and conformal mapping technique. The closed-form solu-
tions of electric potential, temperature and stress components are presented according to electrical
insulated and thermal exact boundary conditions on the rim of the hole or inclusion. Numerical results
are carried out to illustrate the influence of the value of major to minor axis ratio of the elliptic geometry
and heat conductivity of inhomogeneity on thermoelectric and stress fields. It is found that energy flux at
surfaces of the hole or rigid inclusion does not vanish due to the Joule heat and Seebeck effect when the
electric field is applied. In addition, stress induced by applied electric field has a non-linear relationship
with the electric current density. The heat conductivity of the air inside the elliptic hole reduces the
concentration factors of energy flux and stress. However, the concentration factors of energy flux and
stress at the bonding interface increase with the increasing values of heat conductivity of the flat rigid
inclusion.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

Thermoelectric materials for solid state energy conversion have
been extensively used for electric cooling [1], electricity power
generation in harvesting wasted heat [2], solar energy harvesting
[3] and carbon reduction [4]. However, most thermoelectric ma-
terials are brittle in nature with low fracture strength and tough-
ness [5]. Thermoelectric materials are subjected to significant stress
induced by thermal gradient, thermal shock and externally applied
mechanical loadings under in-service particularly when used in
waste heat recovery [6]. Defects resulting from the manufacturing
processes, such as cracks and holes, can cause electric potential and
temperature discontinuities across the defects boundary and stress
concentrations, then result in fracture [7e13]. Fracture problems in
thermoelectric materials have been received much attention and
investigated by many experts recently, like other structural mate-
rials subjected heat loadings problems [14e16]. The slow Vickers
indentation crack growth behavior of Mg2Si thermoelectric mate-
rial was observed by Schmidt et al. [17]. Analytic solutions for the

thermoelectric material containing a 2D crack problem were
derived by Zhang andWang [18], and Song et al. [19], respectively. It
is found that electric current density, heat flux and stress exhibit
traditional inverse square-root singularity at the crack front. Li et al.
[20] examined the brittle failure behavior of CoSb3 based skutter-
udite thermoelectric material by using large-scale molecular dy-
namics simulations. Based on the complex variable method, the
study dealing with thermal stress concentration induced by an
elliptic hole has been performed by Zhang andWang [21]. In above-
mentioned works, the boundary conditions on the hole or crack
surfaces are always supposed to be electrical and thermal imper-
meable. The thermal conductivity of crack interior has great in-
fluences on the mode-II stress intensity factor for a thermal-
medium crack in a thermoelastic material under a thermal
loading [22]. Zhang and Wang [23] discussed the applicability of
crack surfaces thermal boundary condition in a layered thermo-
electric or metal/thermoelectric material, and the results show that
the heat conductivity of air filled in a crack cannot be neglected.

On the other hand, in order to meet the various technology
applications, much effort on thermoelectric materials has been
devoted towards improving their figure of merit and energy con-
version efficiency [24e29]. The efficiency of thermoelectric* Corresponding author.
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conversion depends on a dimensionless figure of merit ZT ¼ ε
2gT=k

[30], where g, k, ε and T are the electric conductivity, heat con-
ductivity, Seebeck coefficient and absolute temperature, respec-
tively. Thermoelectric material with high energy conversion
efficiency requires not only high Seebeck coefficient to have high
voltage output, but also high electric conductivity to reduce Joule
heat loss and low heat conductivity to maintain large temperature
difference. However, it is rather difficult to increase ZT because of
competing effects of electrical and thermal conductivities, that is, a
good heat conductor is usually a good electric conductor as well.
One of the main strategies in developing thermoelectric materials
with high energy conversion efficiency is to engineer hybrid com-
posites, especially with nanostructures. Comparingwith the system
with the single material, composite structures with the layered
and/or inclusions have better thermal and mechanical behaviors
[31e34]. The thermoelectric properties of semiconductor materials
with nanoinclusions can be improved based on the concept of band
bending at inclusion/semiconductor interfaces as an energy filter
for electrons [35]. An effective path to increase the electrical con-
ductivity while to decrease the thermal conductivity, and thus to
improve the figure of merit by nano-inclusions was reported by
Wang et al., [36]. Introduction of metallic inclusion can enhance the
thermoelectric material performance of manganese silicide nano-
composites [37]. The presence of inclusions affects the energy
conversion efficiency, strength and reliability of thermoelectric
materials, and it is therefore important to study the local fields
induced by the inclusions. Thermoelectric materials have
increasing applications in the engineering, however, to our best
knowledge relatively little work has been done for the inclusion
problem based on the continuum mechanics theory.

In view of the above literature analysis, the purpose of this paper
is to seek a general solution to the problem of a 2D thermoelectric
material with an elliptic hole or rigid inclusion. The influence of
heat conductivity of air inside the hole and inclusion on the dis-
tribution of electric field, temperature and stress is also investi-
gated. The paper is organized as follows. Firstly, basic equations for
thermoelectric material are outlined in Section 1. Next, closed-form
solutions of the electric potential, temperature and stress fields for
an elliptic hole and rigid inclusion are derived in Sections 3 and 4,
respectively. Some numerical results are given in Section 5. Finally,
Concluding remarks are made.

2. Basic equations for thermoelectric materials

We consider an isotropic thermoelectric material in which the
electric potential is V and the absolute temperature is T. Such a
material is characterized by the electric conductivity g, thermal
conductivity k and Seebeck coefficient ε. The governing equations
for a thermoelectric material in the absence of electric charges and
heat sources can be presented in the form [38,39],

V,je ¼ 0
V,qþ je,VV ¼ 0 (1)

and the transport of electric current density vector je ¼ ½jex; jey�T
and heat flux vector q ¼ ½qx; qy�T is given as

je ¼ �gVV � gεVT
q ¼ �gεTVV � �kþ gε2T

�
VT

(2)

Notice that the uncoupled transport equations of electricity and
heat are recovered when ε ¼ 0, and the temperature function T and
its gradient VT enter into the heat transport Eq. (2)2, making the
coupling nonlinear. Since energy is transported by both electrons
and heat, the energy flux vector ju ¼ ½jux; juy�T can be derived from

the electric current density and heat flux as ju ¼ qþ jeV . For the
sake of convenience, an analytic function F is defined as
F ¼ V þ εT[18], then we have

je ¼ �gVF
ju ¼ �gFVF � kVT

(3)

Combining Eqs. (1) and (3), the constitutive equations become,

V2F ¼ 0
kV2T þ gðVFÞ2 ¼ 0

(4)

For the two-dimensional thermoelectric problem considered
here, the general solutions of thermo-electro-elastic fields are
derived detailed in our previous work [21], and summarized briefly
as follows. The solutions of F and T can be expressed as,

F ¼ Re½f1ðzÞ�
T ¼ Re½gðzÞ� � g

4k
f1ðzÞf1ðzÞ

(5)

where z ¼ xþ iy, f1ðzÞ and gðzÞ are unknown analytic functions and
“Re” stands for the real part of a complex number. Re-writing Eq. (3)
gives:

jex � ijey ¼ �gf 01ðzÞ

jux � ijuy ¼ �g

2
f1ðzÞf 01ðzÞ � kg0ðzÞ

(6)

The boundary conditions of electric current density and energy
flux are,

f1ðzÞ � f1ðzÞ ¼ �2i
g

Z
jenðsÞdsþ constant

Im
hg
4
f1

2ðzÞ þ kgðzÞ
i
¼ �

Z
junðsÞdsþ constant

(7)

where “Im” stands for the imaginary part of a complex number,
jenðsÞ and junðsÞ represent the normal electric current density and
normal energy flux for the point s along the boundary, respectively.

The corresponding thermal stresses and displacement induced
by the temperature field T can be obtained as [21,40]:

sxx þ syy ¼ 4Re½40ðzÞ� þ 2ma*g
kðkþ 1Þf1ðzÞf1ðzÞ

syy � sxx þ 2isxy ¼ 2
h
z4

00 ðzÞ þ f0ðzÞ
i
þ 2ma*g
kðkþ 1Þf2ðzÞf

0
1ðzÞ

(8)

2m
�
ux þ iuy

� ¼ k4ðzÞ � z40ðzÞ � fðzÞ þ 2ma*
Z

gðzÞdz

� ma*g

kðkþ 1Þf2ðzÞf1ðzÞ (9)

where f2
0ðzÞ ¼ f1ðzÞ, 4ðzÞ and fðzÞ are complex stress potential

functions to be determined, m is the shearmodulus, and k and a* are
defined as follows,

k ¼
8<
:

3� n

1þ n
; for plane stress state

3� 4n; for plane strain state
(10)

a* ¼
�

a; for plane stress state
ð1þ nÞa; for plane strain state

(11)

n and a are the Poisson's ratio and the linear thermal expansion,
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