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a b s t r a c t

The objective of the present work is to analyze the thermoelastic interactions inside an infinitely
extended thick plate due to an axisymmetric temperature distribution applied at the lower and upper
surfaces of the plate under recent heat conduction models, namely Green-Naghdi-I model, Green-
Naghdi-II model, dual phase-lag model and Green-Lindsay model. In order to investigate the problem
under all these four heat conduction models simultaneously, we consider the basic governing equations
under all these models and formulate our problem in a unified way. The potential function concept along
with Laplace and Hankel transform techniques has been used to solve the problem. Inversion of Hankel
transform has been carried out analytically to obtain the solution in Laplace transform domain. The
short-time approximation technique is employed to invert the solutions obtained in Laplace transform
domain and an appropriate analytical approach has been used to analyze the wave propagation and
discontinuities of different wave fields. In addition, a numerical method has been used to invert the
Laplace transform directly in order to find out the distributions of all the physical fields, like stress,
temperature and displacement in the middle plane of the plate. Results are analyzed to make a
comparative analysis of the predictions of Green-Naghdi-II model with the predictions by dual phase-lag
thermoelastic model and other models. The special findings and differences among the predictions by
four models have been highlighted.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

A widespread attention has been devoted to the generalization
of the governing equations of coupled themoelasticity suggested by
Biot [1]. The reason for the introduction of the theories of gener-
alized themoelasticity is mainly due to the fact that the existing
coupled thermoelasticity theory predicts infinite speed of propa-
gation for thermal waves which is clearly not acceptable as this
contradicts the physical observations that maximum wave speed
can not exceed that of light in vacuum. In opposite to this con-
ventional theory that is based on the parabolic type heat conduc-
tion equation predicting infinite speed of propagation for heat
waves, the generalized theories are based on the hyperbolic type
equation for thermal signals. It was found that in some situations,

the classical theory gives wrong values for the temperature
differing from values which are found in experiment. Specially, it
has been realized that the heat equation obtained from Fourier's
law of heat conduction fails to interpret the transient temperature
field in the state containing short times, high frequencies, and small
wavelengths [2]. Maurer and Thomson [3] showed that, by
including a thin slab to a sharp thermal shock, its surface temper-
ature is 300� C which is larger than the value predicted by the
classical theory. Hence, the generalized theories of thermoelasticity
are introduced to take into account of these unrealistic predictions
of classical coupled theory. First of all, we would like to recall the
generalized theory developed by Lord and Shulman [4] in which a
new law of heat conduction model has replaced the Fourier’s law
with the inclusion of one thermal relaxation time parameter. Under
this theory, the heat conduction equation is therefore reduced to a
hyperbolic type equation which ensures the finite speeds of prop-
agation for heat and elastic waves. Later on, Dhaliwal and Sherief
[5] extended this theory to general anisotropic materials in the
presence of heat source.
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Muller [6] firstly introduced the theory of generalized thermo-
elasiticty having two relaxation time parameters and later on, the
more explicit version of this theory was introduced by Green and
Lindsay [7] in which the temperature rates were considered among
the constitutive variables. This theory also predicts finite speed of
heat propagation as in Lord and Shulman's theory [4]. Later on, an
alternative version of thermoelasticity have been proposed by
Green and Naghdi [8e10] which is divided into three parts. They
are subsequently being referred to as thermoelastic models of type
Green-Naghdi model-I (GN-I), Green-Naghdi model-II (GN-II) and
Green-Naghdi model-III (GN-III). The first two models are the sub-
cases of type GN-III model. Temperature gradient and thermal
displacement gradient are taken to be as constitutive variables in
which the linearized version of model-I is closely related to classical
thermoelastic model while there is no dissipation in model-II that
occurs due to no change in internal energy and the internal rate of
production of thermal entropy is assumed to be identically zero.
This model is also termed as thermoelasticity without energy
dissipation model. However, this does not happen in the general
case i.e GN-III. The heat conduction equation under GN-III model is
taken to be of the form

q!ðp; tÞ ¼ ��K V
!
Tðp; tÞ þ K� V

!
nðp; tÞ�;

where K and K�; both being positive material parameters, are
known as the thermal conductivity and conductivity rate, respec-
tively and _n ¼ T , where n is termed as thermal displacement while
q! is the heat flux vector.

Further, one more model is introduced by Hetnarski and
Ignaczak [11] which is subsequently known as low temperature
thermoelastic model which is also explained by the system of non
linear field equations inwhich the heat flux and free energy depend
on temperature, strain tensor and heat flux. By focusing on the
theoretical significance of various models, Hetnarski and Ignaczak
[12] reviewed thoroughly in a survey article and domain of influ-
ence theorem is also explained by them with an initial value
problem for Lord-Shulman [4], Green-Lindsay [7] and thermo-
elasticity without energy dissipation theories [10]. The dual phase-
lag heat conduction model is proposed by Tzou [13] by taking into
account the micro structural effects in heat transport process in
which one parameter for heat flux vector and other for temperature
gradient vector is used. The proposed heat conduction law is of the
form

q!�p; t þ tq
� ¼ ��K V

!
Tðp; t þ tTÞ

�
; tq >0; tT >0;

where, tq and tT ; are the delay time parameters. The micro struc-
tural interactions during heat transport phenomenon is captured
by these two parameters where the micro structural effects like
phonon scattering causes the delay times tT and tq caused by fast-
transient effects of thermal inertia and above relation interprets
that the gradient of temperature at a point p in the body at time t þ
tT corresponds to the heat flux vector at that point at time t þ tq.
Clearly, above relation reduces to Fourier law in the case when
tq ¼ tT ¼ 0. By assuming tq >0; tT >0, the dual phase-lag heat
conduction model suggested by Tzou [13] has been further
extended to a hyperbolic thermoelastic model with dual phase-lag
effects by using its Taylor's series expansion and taking the second
order term for q! to ensure finite speed of thermal signals. Later on,
the stability and uniqueness of solutions on this approximated two
phase lag model is discussed in a detailed way by Quintanilla [14].

The main objective of the current work is to compare the results
under the thermoelasticity without energy dissipation (Green-
Naghdi-II model) for an axisymmetric temperature distribution

applied at the upper and lower surfaces of an infinitely extended
thick plate with the corresponding results predicted by the other
heat conduction models like, Green-Naghdi model-I, dual phase-
lag model and Green-Lindsay model. The problem in the context
of Green-Lindsay model and dual phase-lag model has been stud-
ied by Aouadi [15] and Mukhopadhyay and Kumar [16]. In section 2
of the present work, the heat conduction equations under all four
models are given which further have been written as a unified way
and the governing equations involving the displacement, thermal
and stress fields without any heat source or body force in isotropic
medium are considered. In section 3, formulation of the problem
has been carried out in which homogeneous, isotropic and an
infinitely extended thick plate of thickness 2l is considered and the
Helmholtz decomposition technique is used to decouple the
problem. In section 4, the boundary conditions have been illus-
trated in which both the upper and lower planes of the plate have
been taken as a traction free and these planes of the plate are
subjected to an axisymmetric temperature distribution. In
subsection 4.1, Laplace and Hankel transform techniques have been
used to solve the problem and the solution has been found out in
the transform domain. In subsection 4.2, inversion of Hankel
transform has been carried out while in subsection 4.3, inversion of
Laplace transform has been performed by using short time
approximated method. On the basis of the short-time approxi-
mated results, discontinuities of physical fields are discussed by
using the Boley's theorem [17] and in subsection 4.4, the analytical
results have been explained. We further presented a detailed
comparison of the results under GN-II model with the results in the
context of other models. In section 5 the numerical computation is
carried out by taking a copper material and the specific features of
all the four models have been described. Section 6 represents an
overall conclusion of the proposed work and investigates the
prominent disagreement of the thermoelasticity without energy
dissipation model with other models.

2. Governing equations

For homogeneous and isotropic elastic medium, the linearized
heat conduction equations in the absence of any heat source in the
contexts of different models can be written as

Green� Naghdi model� II ðGN� IIÞ [10]:

K�V2T ¼
�
r cv€T þ g T0€e

�
; (1)

Green� Naghdi model� I ðGN� IÞ [8]:

K
v

vt
V2T ¼

�
r cv€T þ g T0€e

�
; (2)

Dual phase� lag model [16]:

K
�
1þ tT

v

vt

	
V2T ¼

 
1þ tq

v

vt
þ t2q

2
v2

vt2

!�
r cv _T þ g T0 _e

�
; (3)

Green� Lindsay model [15]:

K V2T ¼ r cv

�
1þ t1

v

vt

	
_T þ g T0 _e; (4)

The governing equations involving the displacement, thermal
and stress fields without any body force in an isotropic and ho-
mogeneous medium can be written as

The equation of motion:

sij; j ¼ r€ui; (5)

Srain� displacement relation:
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