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Abstract

In this paper, a consistent integration procedure for the thermoviscoplastic version of the complete Gurson model is proposed. With
adiabatic conditions considered and with the use of the backward Euler integration scheme, a numerical algorithm implicit in all vari-
ables as well as the corresponding algorithmic operator have been developed. The proposed algorithm was implemented in a finite ele-
ment code and its performance is demonstrated with the numerical simulation of different examples.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Gurson model; Thermoviscoplasticity; Consistent integration

1. Introduction

It is well known that the mechanical properties of an
alloy will change under different strain-rate loadings. Thus,
an understanding of the constitutive behaviour of metals
over a wide range of strain rates is of importance in many
advanced processes in engineering, such as metal forming
[1], machining [2,3], structures under crashes [4] and high-
speed impact on metallic armours [5,6]. The strain-rate sen-
sitivity, defined as the amount of change of flow stress
because of a change in strain rate, greatly helps to resist
instabilities, and thus should be considered in all these pro-
cesses. Viscoplasticity, as a branch of the theory of solid
mechanics, analyses the effect of strain rate in the inelastic
properties of the material. A widely used viscoplastic for-
mulation is the overstress model (such as Perzyna [7] and
Duvaut-Lions [8]). The main feature of overstress models
is that the rate-independent yield function can become lar-
ger than zero, allowing excursions of stress states outside of
the static yield surface. With the use of the overstress mod-

els, the consistency condition is not fulfilled and the Kuhn–
Tucker conditions are not applicable.

A second approach to describe viscoplastic effects is
referred to as the consistency model, first proposed by
Wang et al. [9] and used by other authors (Ristinmaa
and Ottosen [10], Winnicki et al. [11] and Heeres [12]). In
the consistency approach, a rate-dependent yield surface
is employed and it can expand and shrink not only by soft-
ening or hardening effects, but also by softening/hardening
rate effects, i.e.,

f ðr; j; _jÞ ¼ 0 at _k > 0 ð1Þ

with j being a vector including all the state variables and k
the plastic multiplier. The standard Kuhn–Tucker condi-
tions for loading and unloading remain valid when using
this formulation. Furthermore, the consistency model
yields numerical algorithms with a somewhat higher con-
vergence rate than that derived by the overstress model
[11,13].

The above-mentioned processes involving high strain
rates are often accompanied by a rise in temperature due
to the dissipation of plastic work. This means that the
energy-balance equation governing temperature evolution
should involve terms arising from a thermomechanical
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coupling. This effect cannot be avoided in most cases in
finite deformation problems, especially when the material
is heated rapidly and the amount of local heat transfer
decreases due to limited thermal diffusion. The thermody-
namic process deviates from the isothermal conditions
and approaches adiabaticity, leading to large variations
in the temperature field. Calculations should then use tem-
perature-variable mechanical properties, and thermal soft-
ening of the material should be considered since dynamic
plastic instabilities, such as adiabatic shear bands or neck-
ing, are commonly triggered by a decrease in the yield limit
with increasing temperatures [14–17]. Numerical investiga-
tions in thermoviscoplasticity are frequently related to
overstress models [18,19]. Recently, Zaera and Fernán-
dez-Sáez [20] have extended the consistency model to ana-
lyse the thermoviscoplastic behaviour of metals. They have
proposed a fully implicit scheme which is easily imple-
mented and inherits the robustness and stability of return
mapping algorithms.

The above works do not take into account the micro-
mechanics phenomena responsible for damage and fracture
when ductile metals are used. In these cases, processes can
be accompanied by major accumulated damage, causing
internal deterioration and macroscopic failure. In most
ductile metals, the damage mechanisms involve the nucle-
ation of voids at second particles, by decohesion of the par-
ticle–matrix interface or by particle fracture, the further
growth of voids due to the plastic straining of the sur-
rounding matrix and, finally, the coalescence to form a
macroscopic crack.

In the continuum-mechanics framework, the most
widely used model to describe the aforementioned pro-
cesses was originally developed by Gurson [21] and further
improved by Tvergaard [22,23] and Tvergaard and Needle-
man [24] (the so-called GTN model). This model predicts
the coalescence of voids when a critical volume fraction
of them, empirically selected, is reached. Following the
plastic-limit-load approach proposed by Thomason [25] a
new criterion for void coalescence has been incorporated
into the GTN model (called the complete Gurson model
[26–28]). This complete Gurson model considers the critical
volume fraction of the void as a material- and stress-depen-
dent parameter.

Different authors have applied the Gurson model to
dynamic problems, involving inertial and high-strain-rate
effects [29–35]. Recently, Betegón et al. [36] included
strain-rate effects in the consistency model of Gurson mate-
rials and they have proposed an implicit method to integrate
the constitutive equations of ductile metallic materials under
high strain rates based on the complete Gurson model.

In the above-mentioned works, the thermal effects
accompanying the deformation processes at high strain
rates are not taken into account. Srikanth and Zabaras
[37] proposed a thermoplastic model coupled with ductile
damage using the GTN approach to analyse metal forming
processes. Thermoviscoplastic versions of the Gurson
model, including strain-rate and temperature effects, has

been developed by Koppenhoefer and Dodds [38], Eberle
et al. [39], Needleman and Tvergaard [40], Tvergaard and
Needleman [41], and Hao and Brock [42].

In the present paper, thermal effects are included in the
consistency viscoplastic model of void-containing materials
modelled by the Gurson constitutive equations, and a con-
sistent integration procedure for the thermoviscoplastic
version of the complete Gurson model is proposed. With
the consideration of adiabatic conditions and with the
use of the backward Euler integration scheme, a numerical
algorithm implicit in all variables as well as the correspond-
ing algorithmic operator was developed. The proposed
algorithm was implemented in the finite element commer-
cial codes ABAQUS/Standard [43] and ABAQUS/Explicit
[44] through the material subroutines UMAT and
VUMAT, respectively, and its performance is demon-
strated with the numerical simulation of different examples.

2. A themoviscoplastic version of the complete Gurson model

2.1. Basic kinematics

Let Bt � R3 define the current configuration at time
t 2 R of a continuum body B, and B0 � R3 the reference,
initial or undeformed configuration at time t ¼ 0 (consid-
ered coincident). Let X 2 B be a particle in the body,
X 2 B0 the position of X in the reference configuration
B0, and x 2 Bt the position of X in the current configura-
tion Bt. The motion of the body is defined by a smooth
time-dependent mapping ut : B0 ! Bt, that is x ¼ utðXÞ.
The deformation gradient F is a two-point tensor defined
by

F ¼ rXutðXÞ ¼
ox

oX
: ð2Þ

This tensor transforms an infinitesimal material vector
dX 2 B0 into the corresponding spatial vector dx 2 Bt:

dx ¼ FdX: ð3Þ
The application of the theorem of polar decomposition to
F implies:

F ¼ RU ¼ VR; ð4Þ
R being the polar orthogonal rotation tensor, U the mate-
rial or right stretch tensor and V the spatial or left stretch
tensor. The velocity of a particle vt at time t is defined con-
sistently as the time derivative of the spatial position x:

vtðxÞ ¼
ou�1

t ðxÞ
ot

: ð5Þ

The velocity gradient tensor l is the spatial derivative of vt,
which is given by

l ¼ rxvt ¼
ovtðxÞ

ox
¼ _FF�1: ð6Þ

The symmetric and skew-symmetric parts of the latter
expression supply two additional rate tensors: the rate of
deformation tensor d and the spin tensor w:
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